【题目】如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=
NF;③
;④
.其中正确的结论的序号是______.
![]()
【答案】①③.
【解析】
①易证△ABF≌△BCG,即可解题;
②易证△BNF∽△BCG,即可求得
的值,即可解题;
③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;
④连接AG,FG,根据③中结论即可求得S四边形CGNF和S四边形ANGD,即可解题.
①∵四边形ABCD为正方形,
∴AB=BC=CD,
∵BE=EF=FC,CG=2GD,
∴BF=CG,
∵在△ABF和△BCG中,
,
∴△ABF≌△BCG,
∴∠BAF=∠CBG,
∵∠BAF+∠BFA=90°,
∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;
②∵在△BNF和△BCG中,∠CBG=∠NBF,∠BCG=∠BNF=90°,
∴△BNF∽△BCG,
∴
,
∴BN=
NF;②错误;
③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,
![]()
AF=
=
,
∵S△ABF=
AFBN=
ABBF,
∴BN=
,NF=
BN=
,
∴AN=AF-NF=
,
∵E是BF中点,
∴EH是△BFN的中位线,
∴EH=
,NH=
,BN∥EH,
∴AH=
,
,解得:MN=
,
∴BM=BN-MN=
,MG=BG-BM=
,
∴
;③正确;
④连接AG,FG,根据③中结论,
![]()
则NG=BG-BN=
,
∵S四边形CGNF=S△CFG+S△GNF=
CGCF+
NFNG=1+
=
,
S四边形ANGD=S△ANG+S△ADG=
ANGN+
ADDG=
,
∴S四边形CGNF≠
S四边形ANGD,④错误.
故选A.
科目:初中数学 来源: 题型:
【题目】已知函数y=2mx2+(1﹣4m)x+2m﹣1,下列结论错误的是( )
A. 当m=0时,y随x的增大而增大
B. 当m=
时,函数图象的顶点坐标是(
,﹣
)
C. 当m=﹣1时,若x<
,则y随x的增大而减小
D. 无论m取何值,函数图象都经过同一个点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD的对角线
、
交于点
,顺次联结ABCD各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①
⊥
;②
;③
;④
,可以使这个新的四边形成为矩形,那么这样的条件个数是()
![]()
A. 1个;B. 2个;
C. 3个;D. 4个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某通讯运营商的手机上网流量资费标准推出了三种优惠方案:
方案A:按流量计费,0.1元/M;
![]()
方案B:20元流量套餐包月,包含500M流量,如果超过500M,超过部分另外计费(见图象),如果用到1000M时,超过1000M的流量不再收费;
方案C:120元包月,无限制使用.
用x表示每月上网流量(单位:M),y表示每月的流量费用(单位:元),方案B和方案C对应的y关于x的函数图象如图所示,请解决以下问题:
(1)写出方案A的函数解析式,并在图中画出其图象;
(2)直接写出方案B的函数解析式;
(3)若甲乙两人每月使用流量分别在300—600M,800—1200M之间,请你分别给出甲乙二人经济合理的选择方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一笔直的海岸线上有
、
两个观测站,
在
的正东方向,
千米,在某一时刻,从观测站
测得一艘集装箱货船位于北偏西
的
处,同时观测站
测得改集装箱船位于北偏西
方向,问此时该集装箱船与海岸之间距离
约多少千米?(最后结果保留整数)
(参考数据:
,
,
,
,
,
)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 .
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线
,
为直线
上两点,
为直线
上两点.
![]()
(1)如果固定点
,点
在直线
上移动,那么不论点
移动到何处,总有
_____与
的面积相等,理由是_________________.
(2)如果
处在如图所示位置,请写出另外两对面积相等的三角形:①_________________;②_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.
![]()
(1)求证:AD平分∠BAC;
(2)求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
![]()
(1)△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;(画出图形)
(3)△A2B2C2的面积是 平方单位.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com