【题目】四边形的对角线交点,点分别为边的中点.有下列四个推断,
①对于任意四边形,四边形都是平行四边形;
②若四边形是平行四边形,则与交于点;
③若四边形是矩形,则四边形也是矩形;
④若四边形是正方形,则四边形也一定是正方形.
所有正确推断的序号是_____________.
【答案】①②
【解析】
根据四边形的性质及中位线的性质推导即可.
①如图所示:
∵M,N,P,Q分别是AB,BC,CD,DA的中点
∴且,且
∴且
∴MNPQ是平行四边形
故①正确;
②如图所示:
∵ABCD是平行四边形,且N,Q分别是BC,AD中点
∴
∵O为AC中点,
∴
∴N,O,Q三点共线
同理可得:M,O,P三点共线,
故MP与NQ交于点O
故②正确
③如图所示:
∵ABCD为矩形
∴AC=BD
∵M,N,P,Q分别是AB,BC,CD,DA的中点
∴且,且,且
∴且
∴MNPQ是平行四边形
∵AC=BD,
∴MN=PN
∴MNPQ为菱形
故③错误;
④如图所示:
∵MNPQ为正方形
∴MN=PN,且
∵M,N,P,Q分别是AB,BC,CD ,DA中点
∴且,且
∴AC=BD,且
∴ABCD可为正方形,也可为对角线垂直的等腰梯形
故④错误,
故答案为:①②.
科目:初中数学 来源: 题型:
【题目】有六张正面分别标有数字﹣2,﹣1,0,1,2,3的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,将该卡片上的数字加1记为b,则函数y=ax2+bx+2的图象过点(1,3)的概率为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x﹣2与x轴交于点A,以OA为斜边在x轴的上方作等腰直角三角形OAB,将△OAB沿x轴向右平移,当点B落在直线y=x﹣2上时,则线段AB在平移过程中扫过部分的图形面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点,(不与点B、C)重合,将线段AD绕点A逆时针旋转60°得到AE,连接EC,则∠ACE的度数是__________,线段AC,CD,CE之间的数量关系是_______________.
(2)2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B、C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由.
(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地相距 120 千米,小张骑自行车从甲地出发匀速驶往乙地,出发 a小时开始休息,1 小时后仍按原速继续行驶.小李比小张晚出发一段时间,骑摩托车从乙地匀速驶往甲地,图中折线 CD-DE-EF,线段 AB 分别表示小张、小李与乙地的距离 y(千米)与小张出发时间 x(小时)之间的函数关系图象.
(1)小李到达甲地后,再经过 小时小张到达乙地;小张骑自行车的速度是 千米/时;
(2)当 a=4 时,求小张与乙地的距离 y乙 与小张出发的时间 x(小时)之间的函数关系式;
(3)若小张恰好在休息期间与小李相遇,请直接写出 a 的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知菱形中,,点为边上一个动点(不与点重合),点在边上,且,将线段绕着点逆时针旋转120°得线段,连接.
(1)依题意补全图形;
(2)求证:为等边三角形
(3)用等式表示线段的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲,乙两车与B地的路程分别为y甲(km),y乙 (km),行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:
(1)乙车休息了多长时间;
(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;
(3)当两车相距40km时,求出x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为8,△D′PH的面积为2,则矩形ABCD的面积等于 ( )
A.B.C.D.16+12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k<0)的图象与反比例函数y=图象都经过点A(a,4),一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.
(1)求这两个函数的表达式;
(2)将直线AB向下平移5个单位长度后与第四象限内的反比例函数图象交于点D,连接AD、BD,求△ADB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com