精英家教网 > 初中数学 > 题目详情

【题目】如图,在每个小正方形的边长为的网格中,△的顶点均在格点上.

1的长等于_____________

2)在如图所示的网格中,将△绕点旋转,使得点的对应点落在边上,得到△,请用无刻度的直尺,画出△,并简要说明这个三角形的各个顶点是如何找到的(不要求证明)__________

【答案】 见解析,

【解析】

1)根据勾股定理计算即可;

2 如图,连接AD,交BC,连接AECF交于点,连接,△即为求作三角形.

解:(1)在中,,

故答案为:

2)如图,连接AD,交BC,连接AECF交于点,连接,△即为求作三角形.

证明:连接CD、DH、BH、FG、AG

RtAHD中,,

RtAGE中,,

AH=EG=3DH=AG=4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,OF是∠MON的平分线,点A在射线OM上,PQ是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OFON交于点B、点C,连接ABPB

1)如图1,当PQ两点都在射线ON上时,请直接写出线段ABPB的数量关系;

2)如图2,当PQ两点都在射线ON的反向延长线上时,线段ABPB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;

3)如图3MON=60°,连接AP,设=k,当PQ两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.

【答案】(1)AB=PB;(2)存在;(3)k=0.5.

【解析】试题分析:(1)结论:AB=PB.连接BQ,只要证明AOB≌△PQB即可解决问题;

2)存在.证明方法类似(1);

3)连接BQ.只要证明ABP∽△OBQ,即可推出=,由AOB=30°,推出当BAOM时, 的值最小,最小值为0.5,由此即可解决问题;

试题解析:解:(1)连接:AB=PB.理由:如图1中,连接BQ

BC垂直平分OQBO=BQ∴∠BOQ=∠BQOOF平分MON∴∠AOB=∠BQOOA=PQ∴△AOB≌△PQBAB=PB

2)存在,理由:如图2中,连接BQ

BC垂直平分OQBO=BQ∴∠BOQ=∠BQOOF平分MONBOQ=∠FON∴∠AOF=∠FON=∠BQC∴∠BQP=∠AOBOA=PQ∴△AOB≌△PQBAB=PB

3)连接BQ

易证ABO≌△PBQ∴∠OAB=BPQAB=PB∵∠OPB+BPQ=180°∴∠OAB+OPB=180°AOP+ABP=180°∵∠MON=60°∴∠ABP=120°BA=BP∴∠BAP=BPA=30°BO=BQ∴∠BOQ=BQO=30°∴△ABP∽△OBQ =∵∠AOB=30°BAOM时, 的值最小,最小值为0.5k=0.5

点睛:本题考查相似综合题、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.

型】解答
束】
28

【题目】如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣x﹣4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PEx轴,垂足为E,交直线l于点F.

(1)试求该抛物线表达式;

(2)如图(1),若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;

(3)如图(2),过点P作PHy轴,垂足为H,连接AC.

求证:ACD是直角三角形;

试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与ACD相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就学生体育活动兴趣爱好的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:

1)在这次调查中,喜欢篮球项目的同学有   人,在扇形统计图中,乒乓球的百分比为   

2)请将条形统计图补充完整.

3)如果学校有800名学生,估计全校学生中有多少人喜欢篮球项目.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,EF分别在边ADCD上,AFBE相交于点G,若AE=3ED,DF=CF,则的值是  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的直径,为弦的中点,连接并延长与交于点,过点的切线,交的延长线于点

1)求证:

2)连接,若,请求出四边形的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,∠A=60°AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,AB=10cm,BC=8cm,点P从点A沿AC向点C1cm/s的速度运动,同时点Q从点C沿CB向点B2cm/s的速度运动(点Q运动到点B停止)。则四边形PABQ的面积y()与运动时间x(s)之间的函数图象为(

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtDEF中,∠EFD90°,∠DEF30°,EF3cm,边长为2cm的等边△ABC的顶点C与点E重合,另一个顶点B(在点C的左侧)在射线FE上.将△ABC沿EF方向进行平移,直到ADF在同一条直线上时停止,设△ABC在平移过程中与△DEF的重叠面积为ycm2CE的长为xcm,则下列图象中,能表示yx的函数关系的图象大致是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知分别是射线上的点.

1)尺规作图:在的内部确定一点,使得;(保留作图痕迹,不写作法)

2)在(1)中,连接,用无刻度直尺在线段上确定一点,使得,并证明

查看答案和解析>>

同步练习册答案