【题目】已知Rt△ABC中,AC=BC,∠C=90°,D为AB边中点,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F
(1)当点E在AC边上时(如图1),求证CE=BF
(2)在(1)的条件下,求证:
(3)当∠EDF绕D点旋转到图3的位置即点E、F分别在AC、CB边的延长线上时,上述(2)结论是否成立?若成立,请给予证明;若不成立,又有怎样的数量关系?请写出你的猜想,不需证明.
【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析.
【解析】
(1)由题意证明四边形ECFD为矩形,△DFE中DF=FB,从而求解即可;(2)在图1,图2中分别进行证明,在图1中证明四边形CEDF是正方形,边长是AC的一半,即可得出结论;在图2中利用三角形全等的判定证明△CDE≌△BDF,利用中线的性质得到,从而得到;(3)不成立;同(2),在图3中得:△DEC≌△DBF,得出S△DEF-S△CFE=S△ABC..
解:
(1)由图可知:
∴四边形ECFD是矩形
∴EC=DF,∠DFB=90°
∵Rt△ABC中,AC=BC,
∴
∴DF=FB
∴DE=DF
∴CE=BF
(2)如图1,
∵D是AB的中点
∴AD=BD
由(1)可知
∴△AED≌△DFB
∴DE=DF
∴四边形CEDF是正方形.设△ABC的边长AC=BC=a,则正方形CEDF的边长为a.
∴S△ABC=a2,S正方形DECF=(a)2=a2
即S△DEF+S△CEF=S△ABC;
如图2所示:连接CD;
∵AC=BC,∠ACB=90°,D为AB中点,
∴∠B=45°,∠DCE=∠ACB=45°,CD⊥AB,CD=AB=BD,
∴∠DCE=∠B,∠CDB=90°,
∵∠EDF=90°,
∴∠1=∠2,
在△CDE和△BDF中, ,
∴△CDE≌△BDF(ASA),
∴
又∵D为AB中点,
∴
∴S△DEF+S△CEF=S△ADE+S△BDF=S△ABC;
(3)不成立;S△DEF-S△CEF=S△ABC;理由如下:连接CD,
如图3所示:
同(2)得:△DEC≌△DBF,∠DCE=∠DBF=135°
∴S△DEF=S五边形DBFEC,
=S△CFE+S△DBC,
=S△CFE+S△ABC,
∴S△DEF-S△CFE=S△ABC.
∴S△DEF、S△CEF、S△ABC的关系是:S△DEF-S△CEF=S△ABC.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中(如图),点为直线和双曲线的一个交点,
(1)求、的值;
(2)若点,在直线上有一点,使得,请求出点的坐标;
(3)在双曲线是否存在点,使得,若存在,请求出点的坐标;若不存在请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,有二次函数,顶点为,与轴交于、两点(在左侧),易证点、关于直线对称,且在直线上.过点作直线交直线于点,、分别为直线和直线上的两个动点,连接、、,则的最小值为________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中是真命题的是( )
A. 有两边和其中一边的对角对应相等的两个三角形全等
B. 两条平行直线被第三条直线所截,则一组同旁内角的平分线互相垂直
C. 三角形的一个外角等于两个内角的和
D. 等边三角形既是中心对称图形,又是轴对称图形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系xOy中的线段AB及点P,给出如下定义:
若点P满足PA=PB,则称P为线段AB的“轴点”,其中,当0°<∠APB<60°时,称P为线段AB的“远轴点”;当60°≤∠APB≤180°时,称P为线段AB的“近轴点”.
(1)如图1,点A,B的坐标分别为(-2,0),(2,0),则在,,, 中,线段AB的“近轴点”是 .
(2)如图2,点A的坐标为(3,0),点B在y轴正半轴上,且∠OAB=30°.
①若P为线段AB的“远轴点”,直接写出点P的横坐标t的取值范围 ;
②点C为y轴上的动点(不与点B重合且BC≠AB),若Q为线段AB的“轴点”,当线段QB与QC的和最小时,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,每个小正方形网格的边长为单位1,格点三角形(顶点是网格线的交点的三角形)ABC 如图所示。
(1)请写出点 A,C 的坐标;
(2)请作出三角形ABC 关于y轴对称的三角形A1B1C1;
(3)求△ABC 中AB边上的高。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,.
(1)在以下四个格点中,与、两点不能构成等腰三角形的点是( )
A. B. C. D.
(2)以线段为直角边作,为图中所给的格点,这样的点有几个?写出它们的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com