精英家教网 > 初中数学 > 题目详情
12.在平面直角坐标系中,Rt△OAB的顶点A在x轴上,点A的坐标为(3,0),∠AOB=30°,点E的坐标为($\frac{1}{2}$,0),点P为斜边OB上的一个动点,则PA+PE的最小值为$\frac{\sqrt{31}}{2}$.

分析 过点E作E关于OB的对称点C,连接AC与OB相交,根据轴对称确定最短路线问题AC与OB的交点即为所求的点P,PA+PE的最小值为AC,过点C作CD⊥OA于D,求出CE,∠OEC=60°,再求出ED、CD,然后求出AD,再利用勾股定理列式计算即可得解.

解答 解:如图,过点E作E关于OB的对称点C,连接AC与OB相交,
则AC与OB的交点即为所求的点P,PA+PE的最小值=AC,
过点C作CD⊥OA于D,
∵点C的坐标为($\frac{1}{2}$,0),且∠AOB=30°,
∴OC=$\frac{1}{2}$,CE=1×1×$\frac{1}{2}$=$\frac{1}{2}$,
∠OEC=90°-30°=60°,
∴ED=$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{4}$,CD=$\frac{1}{2}$×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$,
∵顶点A的坐标为(3,0),点E的坐标为($\frac{1}{2}$,0),∠OAB=90°,
∴AE=3-$\frac{1}{2}$=$\frac{5}{2}$,
∴AD=$\frac{5}{2}$+$\frac{1}{4}$=$\frac{11}{4}$,
在Rt△ACD中,由勾股定理得,AC=$\sqrt{(\frac{11}{4})^{2}+(\frac{\sqrt{3}}{4})^{2}}$=$\frac{\sqrt{31}}{2}$.
故答案为:$\frac{\sqrt{31}}{2}$.

点评 本题考查了轴对称确定最短路线问题,坐标与图形性质,解直角三角形,熟练掌握最短路径的确定方法找出点P的位置以及表示PA+PE的最小值的线段是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图所示,在?ABCD中,M,N是对角线BD上的两点,BN=DM,请判断AM与CN有怎样的数量关系,并说明理由,它们的位置关系如何呢?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:如图,在平行四边形ABCD中,E、F分别为边AD、CD上一点,且BE=BF,AG⊥BF于F,CH⊥BE于H,求证:AG=CH.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.小红同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1所示的四边形ABCD,并写出了如下不完整的已知和求证.

(1)在方框中填空,以补全已知求证;
(2)按图2中小红的想法写出证明;
(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.菱形ABCD的对角线AC、BD之比为3:4,其周长为40cm,则菱形ABCD的面积为96cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:|-3|+(-1)2014-$\sqrt{81}$+$\root{3}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.$\sqrt{\frac{16}{81}}$的平方根是±$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.若点A(-1,y1),B(1,y2),C(2,y3)都在反比例函数y=$\frac{k}{x}(k>0)$的图象上,则y1,y2,y3的大小关系为(  )
A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y3<y1<y2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在?ABCD中,∠ODA=90°,AC=20cm,BD=12cm,则AD的长为(  )
A.8cmB.10cmC.12cmD.16cm

查看答案和解析>>

同步练习册答案