分析 (1)把函数一般式转化为顶点坐标式,进而写出对称轴和顶点坐标;
(2)利用描点法画二次函数图象;
(3)根据函数图象,写出函数图象在x轴下方所对应的自变量的取值范围即可.
解答 解:(1)y=2x2-4x-6=2(x-1)2-8,则抛物线的对称轴为直线x=1,顶点坐标为(1,-8),
(2)当y=0时,2x2-4x-6=0,解得x1=-1,x2=3.
所以抛物线与x轴的两交点坐标为(-1,0),(3,0);
当x=0时,y=2x2-4x-6=-6,则抛物线与y轴的交点坐标为(0,-6);
如图,![]()
(3)当-1<x<3时,y<0.
点评 本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x=2 | B. | x=-2 | C. | 无解 | D. | 以上都不对 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com