【题目】如图,已知矩形ABCD,点E在边AD上,连接BE将△ABE沿BE翻折,得到△MBE,且点M是CD中点,取BM中点N,点P为线段BE上一动点,连接PN,PM,若AD长为2,则PM+PN的最小值为_____.
【答案】2
【解析】
作点N关于BE的对称点N',连接PN',由轴对称的性质可得PN+PM=PN'+PM,依据当N',P,M三点共线时,PM+PN的最小值为N'M的长,即可得到PM+PN的最小值为2.
如图,作点N关于BE的对称点N',连接PN',
由折叠可得,BE平分∠ABM,AB=MB,
∴点N'在AB上,
又∵N是BM的中点,
∴N'是AB的中点,
由轴对称的性质可得PN=PN',
∴PN+PM=PN'+PM,
∴当N',P,M三点共线时,PM+PN的最小值为N'M的长,
又∵四边形ABCD是矩形,M是CD的中点,
∴四边形ADMN'是矩形,
∴MN'=AD=2,
∴PM+PN的最小值为2,
故答案为:2.
科目:初中数学 来源: 题型:
【题目】如图,给出下列四个条件:① ∠BAC=∠DCA;② ∠DAC=∠BCA;③ ∠ABD=∠CDB;④ ∠ADB=∠CBD,其中能使 AD∥BC的条件是( )
A.①②B.③④C.②④D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,ABCD是边长为60cm的正方形硬纸片,切去四个全等的等腰直角三角形(阴影部分所示),其中E,F在AB上;再沿虚线折起,点A,B,C,D恰好重合于点O处(如图②所示),形成有一个底面为正方形GHMN的包装盒,设AE=x (cm).
(1)求线段GF的长;(用含x的代数式表示)
(2)当x为何值时,矩形GHPF的面积S (cm2)最大?最大面积为多少?
(3)试问:此种包装盒能否放下一个底面半径为15cm,高为10cm的圆柱形工艺品,且使得圆柱形工艺品的一个底面恰好落在图②中的正方形GHMN内?若能,请求出满足条件的x的值或范围;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.
(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;
(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从全校1200名学生中随机选取一部分学生进行调查,调查情况:A:上网时间 小时;B:1小时<上网时间 小时;C:4小时<上网时间 小时;D:上网时间>7小时.统计结果制成了如图统计图:
(1)参加调查的学生有人;
(2)请将条形统计图补全;
(3)请估计全校上网不超过7小时的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为( )
A. 15 B. 12.5 C. 14.5 D. 17
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解全校学生对新闻,体育.动画、娱乐、戏曲五类电视节目的喜爱情况,机调查了100名学生,结果如扇形图所示,依据图中信息,回答下列问题: (1)在被调查的学生中,喜欢“动画”节目的学生有 _____(名); (2)在扇形统计图中,喜欢“体育”节目的学生部分所对应的扇形圆心角大小为 _____(度).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连结OA,二次函数y=x2图象从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设二次函数顶点M的横坐标为m,当m为何值时,线段PB最短,并求出二次函数的表达式;
(3)当线段PB最短时,二次函数的图象是否过点Q(a,a﹣1),并说理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com