精英家教网 > 初中数学 > 题目详情

【题目】 RtABC ,ACB 90,O BC 经过点 的⊙ O BC AB 分别相交于点 D E 连接 CE CE CA

(1)求证: CE 是⊙ O 的切线

(2)若 tan ABC BD 4,求CD 的长

【答案】(1)见解析;(2) .

【解析】

(1) 连接OE,CE=CA得∠A=CEA,OE=OB得∠B=OEB,故∠CEA+OEB=90°,所以∠OEC =90°

(2)设CD的长为则BC=+4,CO=2+tanABC=,得AC=BC=(+4) CE=CA,得CE=(+4) ,利用勾股定理得 .

(1) 解:连接OE,

CE=CA,

∴∠A=CEA,

OE=OB,

∴∠B=OEB,

∵∠ACB=90°,

∴∠A+B=90°,

∴∠CEA+OEB=90°,

∴∠OEC =90°,

CE是⊙的切线

(2)设CD的长为

BD=4,

BC=+4,

CO=2+,

tanABC=,

AC=BC=(+4) ,

CE=CA,

CE=(+4)

RtCEO中,,

,

,

CD的长为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察下列等式,并探究

……

1)写出第④个等式:______

2)某同学发现,四个连续自然数的积加上1后,结果都将是某一个整数的平方.当这四个数较大时可以进行简便计算,如:

请你猜想写出第n个等式,用含有n的代数式表示,并通过计算验证你的猜想.

3)任何实数的平方都是非负数(即),一个非负数与一个正数的和必定是一个正数(即时,).根据以上的规律和方法试说明:无论x为什么实数,多项式的值永远都是正数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】保护生态环境,建设绿色社会已经从理念变为人们的行动,某化工厂2014年1月的利润为200万元.设2014年1月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2014年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,yx成反比例,到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).

(1)分别求该化工厂治污期间及治污改造工程完工后,yx之间的函数关系式;

(2)治污改造工程顺利完工后经过几个月,该厂月利润才能达到200万元?

(3)当月利润少于100万元时,为该厂资金紧张期,问该厂资金紧张期共有几个月?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在的正方形方格中,每个小正方形的边长都为1,顶点都在网格线交点处的三角形, 是一个格点三角形.

在图中,请判断是否相似,并说明理由;

在图中,以O为位似中心,再画一个格点三角形,使它与的位似比为21

在图中,请画出所有满足条件的格点三角形,它与相似,且有一条公共边和一个公共角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我校举行的小科技创新发明比赛中,共有60人获奖,组委会原计划按照一等奖5人,二等奖15人,三等奖40人进行奖励.后来经学校研究决定,在该项奖励总奖金不变的情况下,各等级获奖人数实际调整为:一等奖10人,二等奖20人,三等奖30人,调整后一等奖每人奖金降低80元,二等奖每人奖金降低50元,三等奖每人奖金降低30元,调整前二等奖每人奖金比三等奖每人奖金多70元,则调整后一等奖每人奖金比二等奖每人奖金多____元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ABACAB的垂直平分线DEABAC于点ED,若ABCBCD的周长分别为21cm13cm,求ABC的各边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt中,AB=BCFAB上一点,连接CF,过BBHCFG,交ACH

1)如图1,延长GH到点E,使GE=GC,连接AE,求的度数;

2)如图2,若FAB中点,连接FH,请探究BHFHCF的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x

1)求x2+y2xy的值;

2)若x的小数部分为ay的小数部分为b,求(a+b2+的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,OA=OD,点F、D、O、A、E在同一直线上,AE=DF,求证:EB∥CF.

查看答案和解析>>

同步练习册答案