【题目】如图,四边形ABCD为矩形,AB=4,BC=6,点E是BC边的中点,将△ABE沿直线AE折叠,点B落在点F处,连接CF,则sin∠ECF的值为___.
科目:初中数学 来源: 题型:
【题目】一辆汽车油箱中有汽油.如果不再加油,那么油箱中的油量(单位:)随行驶路程(单位:)的增加而减少.已知该汽车平均耗油量为.
(Ⅰ)计算并填写下表:
(单位:) | 10 | 100 | 300 | … |
(单位:) | … |
(Ⅱ)写出表示与的函数关系式,并指出自变量的取值范围;
(Ⅲ)若,两地的路程约有,当油箱中油量少于时,汽车会自动报警,则这辆汽车在由地到地,再由地返回地的往返途中,汽车是否会报警?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料,并按要求完成相应地任务:
莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则.
如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.
下面是该定理的证明过程(部分):
延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),
∴△MDI∽△ANI,
∴,
∴①,
如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,
∵DE是⊙O的直径,∴∠DBE=90°,
∵⊙I与AB相切于点F,∴∠AFI=90°,
∴∠DBE=∠IFA,
∵∠BAD=∠E(同弧所对圆周角相等),
∴△AIF∽△EDB,
∴,∴②,
任务:(1)观察发现:, (用含R,d的代数式表示);
(2)请判断BD和ID的数量关系,并说明理由;
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3米.求点B到地面的垂直距离BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据公开报道,2017年全国教育经费总投入为42557亿元,比上年增长9.43%,其中投入在各学段的经费占比(即所占比例)如图,根据图中提供的信息解答下列问题.
(1)在2017年全国教育经费总投入中,义务教育段的经费总投入应该是多少亿元?
(2)2016年全国教育经费总投入约为多少亿元?(精确到0.1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知有一条抛物线的形状(开口方向和开口大小)与抛物线y=2x 相同,它的对称轴是直线x=2;且当x=1时,y=6,求这条抛物线的解析式。
(2)定义:如果点P(t,t)在抛物线上,则点P叫做这条抛物线的不动点。
①求出(1)中所求抛物线的所有不动点的坐标;
②当a、b、c满足什么关系式时,抛物线y=ax+bx+c上一定存在不动点。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂制作两种手工艺品,每天每件获利比多105元,获利30元的与获利240元的数量相等.
(1)制作一件和一件分别获利多少元?
(2)工厂安排65人制作,两种手工艺品,每人每天制作2件或1件.现在在不增加工人的情况下,增加制作.已知每人每天可制作1件(每人每天只能制作一种手工艺品),要求每天制作,两种手工艺品的数量相等.设每天安排人制作,人制作,写出与之间的函数关系式.
(3)在(1)(2)的条件下,每天制作不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知每件获利30元,求每天制作三种手工艺品可获得的总利润(元)的最大值及相应的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】金堂三溪镇被中国柑桔研究所誉为“中国脐橙第一乡”,2016年12月某公司到三溪镇以2.5元/千克购得脐橙12000千克,这些脐橙的销售期最多还有60天,60天后库存的脐橙不能再销售,需要当垃圾处理,处理费为0.1元/千克,经测算,脐橙的销售价格定为8元/千克时,每天可售出100千克;销售单价每降低0.5元,每天可多售出50千克.
(1).如果按8元/千克的价格销售,能否在60天内售完?这些脐橙按此价格销售,获得的利润是多少?
(2).如果按6元/千克的价格销售,这些脐橙获得的利润是多少?当这些脐橙销售价格定为x()元/千克时,可以使公司每天获得利润最大,每天的最大利润为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读):数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.
(理解):(1)如图,两个边长分别为、、的直角三角形和一个两条直角边都是的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;
(2)如图2,行列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:________;
(运用):(3)边形有个顶点,在它的内部再画个点,以()个点为顶点,把边形剪成若干个三角形,设最多可以剪得个这样的三角形.当,时,如图,最多可以剪得个这样的三角形,所以.
①当,时,如图, ;当, 时,;
②对于一般的情形,在边形内画个点,通过归纳猜想,可得 (用含、的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com