精英家教网 > 初中数学 > 题目详情

【题目】体育器材室有AB两种型号的实心球,1A型球与1B型球的质量共7千克,3A型球与1B型球的质量共13千克.

1)每只A型球、B型球的质量分别是多少千克?

2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?

【答案】1)每只A型球的质量是3千克、B型球的质量是4千克;(2A型球、B型球各有3只、2只.

【解析】

1)直接利用1A型球与1B型球的质量共7千克,3A型球与1B型球的质量共13千克得出方程求出答案;

2)利用分类讨论得出方程的解即可.

1)设每只A型球、B型球的质量分别是x千克、y千克,

根据题意可得:,解得:

答:每只A型球的质量是3千克、B型球的质量是4千克;

2)∵现有A型球、B型球的质量共17千克,

∴设A型球1个,设B型球a个,则3+4a=17,解得:a=(不合题意舍去),

A型球2个,设B型球b个,则6+4b=17,解得:b=(不合题意舍去),

A型球3个,设B型球c个,则9+4c=17,解得:c=2

A型球4个,设B型球d个,则12+4d=17,解得:d=(不合题意舍去),

A型球5个,设B型球e个,则15+4e=17,解得:a=(不合题意舍去),

综上所述:A型球、B型球各有3只、2只.

1)设每只A型球、B型球的质量分别是x千克、y千克,

根据题意可得:,解得:

答:每只A型球的质量是3千克、B型球的质量是4千克;

2)∵现有A型球、B型球的质量共17千克,

∴设A型球1个,设B型球a个,则3+4a=17,解得:a=(不合题意舍去),

A型球2个,设B型球b个,则6+4b=17,解得:b=(不合题意舍去),

A型球3个,设B型球c个,则9+4c=17,解得:c=2

A型球4个,设B型球d个,则12+4d=17,解得:d=(不合题意舍去),

A型球5个,设B型球e个,则15+4e=17,解得:a=(不合题意舍去),

综上所述:A型球、B型球各有3只、2只.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠BAC=90°,ADBC,垂足为D.

(1)求作∠ABC的平分线,分别交AD,ACP,Q两点;(要求:尺规作图,保留作图痕迹,不写作法)

(2)证明AP=AQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个由 5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1 ,另两张直角三角形纸片的面积都为 S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为( )

A. 4S2B. 4S2S3C. 3S14S3D. 4S1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.BAD=60°,AC平分∠BAD,AC=2,BN的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将连续的奇数1357、、,按一定规律排成如下表:

图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数

(1) 数表中从小到大排列的第9个数是17,第40个数是_________,第100个数是_________,第n个数是_________

(2) 71排在数表的第_________行,从左往右的第_________个数

(3) T字框内处于中间且靠上方的数是整个数表中从小到大排列的第n个数,请你用含n的代数式表示T字框中的四个数的和

(4) 若将T字框上下左右移动,框住的四个数的和能等于406吗?如能,求出这四个数,如不能,说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,B=90°,AC=60cmA=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DFBC于点F,连接DE,EF.

(1)求证:AE=DF;

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;

(3)当t为何值时,DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据下图,完成下列推理过程.

(1)∵∠1∠A(已知) ADBC

.(________________________________________________________)

(2)∵∠3∠4(已知),∴CDAB

.(________________________________________________________)

(3)∵∠2∠5(已知),∴ADBC

.(________________________________________________________)

(4)∵∠ADC∠C180°(已知),∴ADBC

.(________________________________________________________)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,C=90°B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )

①AD是BAC的平分线;

ADC=60°

③点D在AB的中垂线上;

④BD=2CD.

A.4 B.3 C.2 D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中,正确的个数有(  )

①已知直角三角形的面积为2,两直角边的比为12,则斜边长为

②直角三角形的最大边长为,最短边长为1,则另一边长为

③在△ABC中,若∠A:∠B:∠C=1:56,则△ABC为直角三角形;

④等腰三角形面积为12,底边上的高为4,则腰长为5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案