【题目】如图,在ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.
(1)求证:AEF≌△DEB;
(2)若∠BAC=90°,求证:四边形ADCF是菱形.
科目:初中数学 来源: 题型:
【题目】已知点P为某个封闭图形边界上的一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点,,且点B在双曲线上,在AB的延长线上取一点C,过点C的直线交双曲线于点D,交x轴正半轴于点E,且,则线段CE长度的取值范围是
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知射线OC为∠AOB的平分线,且OA=OB,点P是射线OC上的任意一点,连接AP、BP.
(1)求证:△AOP≌△BOP;
(2)若∠AOB=50°,且点P是△AOB的外心,求∠APB的度数;
(3)若∠AOB=50°,且△OAP为钝角三角形,直接写出∠OAP的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,A(0,8),B(4,0),直线y=﹣x沿x轴作平移运动,平移时交OA于D,交OB于C.
(1)当直线y=﹣x从点O出发以1单位长度/s的速度匀速沿x轴正方向平移,平移到达点B时结束运动,过点D作DE⊥y轴交AB于点E,连接CE,设运动时间为t(s).
①是否存在t值,使得△CDE是以CD为腰的等腰三角形?如果能,请直接写出相应的t值;如果不能,请说明理由.
②将△CDE沿DE翻折后得到△FDE,设△EDF与△ADE重叠部分的面积为y(单位长度的平方).求y关于t的函数关系式及相应的t的取值范围;
(2)若点M是AB的中点,将MC绕点M顺时针旋转90°得到MN,连接AN,请直接写出AN+MN的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知顶点为M(,)的抛物线过点D(3,2),交x轴于A,B两点,交y轴于点C,点P是抛物线上一动点.
(1)求抛物线的解析式;
(2)当点P在直线AD上方时,求△PAD面积的最大值,并求出此时点P的坐标;
(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q'.是否存在点P,使Q'恰好落在x轴上?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每年端午节期间,小华都要自制 A、B 两种类型的粽子在线上线下进行销售,今年他经过市场调查发现,若制作 3 个 A 型粽子 2 个 B 型粽子需成本 11 元,若制作 2 个 A 型粽子 3 个B 型粽子需成本 11.5 元.
(1)求今年制作 A、B 两种类型的粽子每个的成本分别是多少元?
(2)由于今年的疫情,小华预计网上销售会大增,所以决定制作 A 型粽子 2000 个,B 型粽子 1000 个,并且统一售价每个 4 元,销售一段时间后,随着端午节的临近,小华把剩余的粽子打 8 折全部通过线上线下两种方式售出,在制作和销售过程中还产生了除成本以外其它费用合计 700 元,小华在这次买卖中赚到至少 4000 元,则打折销售的粽子最多是多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在足够大的空地上有一段长为a(a≥50)米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
(1)若围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
(2)求矩形菜园ABCD面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com