【题目】如图,一转盘被等分成三个扇形,上面分别标有-1,1,2中的一个数,指针固定,转动转盘后任其自由停止,这时某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数( 若指针恰好指在等分线上,当做指向右边的扇形).若转动一次转盘,将所得的数作为k,则使反比例函数的图象在第一、三象限的概率是多少?若小静和小宇进行游戏,每人各转动两次转盘,若两次所得数的积为正数,则小静赢,若两次所得数的积为负数,则小宇赢.这是个公平的游戏吗?请说明理由.(借助画树状图或列表的方法)
【答案】;不公平,理由见解析
【解析】
根据反比例函数的性质可知:当k>0则图象在第一、三象限,由此解答即可;
依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.
∵2>1>0>-1,
∴反比例函数的图象在第一、三象限的概率是;
列表得:
小静 小宇 | -1 | 1 | 2 |
-1 | (-1,-1) | (-1,1) | (-1,2) |
1 | (1,-1) | (1,1) | (1,2) |
2 | (2,-1) | (2,1) | (2,2) |
由表可知:共有9种可能的结果,每种结果出现的可能性相同,其中两次所得数的积为正数的结果有5种,两次所得数的积为负数的结果有4种,
∴P(小静赢)= ,P(小宇赢)= ,
∵小静赢的概率不等于小宇赢的概率,
∴这个游戏不公平.
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,已知A(1,2)、B(3,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A.5B.6C.7D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,则经过三点的圆弧所在圆的圆心的坐标为__________;点坐标为,连接,直线与的位置关系是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为( )
A.1B.2C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,﹣3),对称轴为x=1,点D与C关于抛物线的对称轴对称.
(1)求抛物线的解析式及点D的坐标;
(2)点P是抛物线上的一点,当△ABP的面积是8时,求出点P的坐标;
(3)点M为直线AD下方抛物线上一动点,设点M的横坐标为m,当m为何值时,△ADM的面积最大?并求出这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=15,BC=17,将矩形ABCD绕点D按顺时针方向旋转得到矩形DEFG,点A落在矩形ABCD的边BC上,连接CG,则CG的长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某化工厂要在规定时间内搬运1200吨化工原料.现有,两种机器人可供选择,已知型机器人比型机器人每小时多搬运30吨型,机器人搬运900吨所用的时间与型机器人搬运600吨所用的时间相等.
(1)求两种机器人每小时分别搬运多少吨化工原料.
(2)该工厂原计划同时使用这两种机器人搬运,工作一段时间后,型机器人又有了新的搬运任务需离开,但必须保证这批化工原料在11小时内全部搬运完毕.问型机器人至少工作几个小时,才能保证这批化工原料在规定的时间内完成?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为
A. 3.7×10﹣5克 B. 3.7×10﹣6克 C. 37×10﹣7克 D. 3.7×10﹣8克
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com