【题目】某建筑公司甲、乙两个工程队共同参与一项改造工程.已知甲队单独完成这项工程的时间是乙队单独完成这项工程时间的1.5倍,由于乙队还有其他任务,先由甲队单独做45天后,再由甲、乙两队合做30天,完成了该项改造工程任务.
(1)求甲、乙两队单独完成改造工程任务各需多少天;
(2)这项改造工程共投资240万元,如果按完成的工程量付款,那么甲、乙两队可获工程款各多少万元?
【答案】(1)甲、乙两队单独完成改造工程任务各需120天、80天;(2)甲队获得工程款为150万元;乙队获得工程款为90万元.
【解析】
(1)设乙队单独完成这项工程时间为天,可得甲队单独完成这项工程时间为1.5x天,根据先由甲队单独做45天后,再由甲、乙两队合做30天,完成了该项改造工程任务列分式方程求出x的值,进而求出1.5x的值即可得答案;
(2)根据两队的工作效率可得两队的工作量占工作总量的比例,乘以240即可得答案.
(1)设乙队单独完成这项工程时间为天.
∵甲队单独完成这项工程的时间是乙队单独完成这项工程时间的1.5倍,
∴甲队单独完成这项工程时间为1.5x天,
∵先由甲队单独做45天后,再由甲、乙两队合做30天,完成了该项改造工程任务
∴
解得:
经检验,是原方程的解.
答:甲、乙两队单独完成改造工程任务各需120天、80天.
(2)甲队获得工程款为:万元,
乙队获得工程款为:万元.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A、08分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.
(1)求A、B两点的坐标。
(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.
(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知OP平分∠AOB,点Q在OP上,点M在OA上,且点Q,M均不与点O重合.在OB上确定点N,使QN =QM,则满足条件的点N的个数为( )
A.1 个B.2个C.1或2个D.无数个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某航空公司经营A、B、C、D四个城市之间的客运业务.若机票价格y(元)是两城市间的距离x(千米)的一次函数.今年“五一”期间部分机票价格如下表所示:
起点 | 终点 | 距离x(千米) | 价格y(元) |
A | B | 1000 | 2050 |
A | C | 800 | 1650 |
A | D | 2550 | |
B | C | 600 | |
C | D | 950 |
(1)求该公司机票价格y(元)与距离x(千米)的函数关系式;
(2)利用(1)中的关系式将表格填完整;
(3)判断A、B、C、D这四个城市中,哪三个城市在同一条直线上?请说明理由;
(4)若航空公司准备从旅游旺季的7月开始增开从B市直接飞到D市的旅游专线,且按以上规律给机票定价,那么机票定价应是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,矩形ABCD被对角线AC分为两个直角三角形,AB=3,BC=6.现将Rt△ADC绕点C顺时针旋转90°,点A旋转后的位置为点E,点D旋转后的位置为点F.以C为原点,以BC所在直线为x轴,以过点C垂直于BC的直线为y轴,建立如图②的平面直角坐标系.
(1)求直线AE的解析式;
(2)将Rt△EFC沿x轴的负半轴平行移动,如图③.设OC=x(0<x≤9),Rt△EFC与Rt△ABO的重叠部分面积为s;求当x=1与x=8时,s的值;
(3)在(2)的条件下s是否存在最大值?若存在,求出这个最大值及此时x的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.
求证:(1)FC=AD;(2)AB=BC+AD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
⑴请你补全这个输水管道的圆形截面;
⑵若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线l:y=x+与x轴负半轴、y轴正半轴分别相交于A、C两点,抛物线y=﹣x2+bx+c经过点B(1,0)和点C.
(1)求抛物线的解析式;
(2)已知点Q是抛物线y=﹣x2+bx+c在第二象限内的一个动点.
①如图1,连接AQ、CQ,设点Q的横坐标为t,△AQC的面积为S,求S与t的函数关系式,并求出S的最大值;
②连接BQ交AC于点D,连接BC,以BD为直径作⊙I,分别交BC、AB于点E、F,连接EF,求线段EF的最小值,并直接写出此时点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com