【题目】如图,方格纸中每个小正方形的边长都是1个单位长度.线段AB的端点A、B都在格点上,请你仅用无刻度的直尺完成下列作图.(保留必要的作图痕迹,不必写作法)
(1)在图①中以AB为边作一个正方形ABCD;
(2)在图②中以点A、点B为顶点作一个面积为12的菱形.
【答案】(1)答案见解析;(2)答案见解析.
【解析】
(1)利用网格,以A为线段的一个端点,在网格上找出点C,使得AB=AC,且AB⊥AC,过C点作AB的平行线,过B点作AC的平行线,两平行线交于D点即为所求.
(2)以AB为对角线,将菱形拆成两个等腰三角形,先以AB为底作出面积为6的等腰△ABC,然后再将△ABC沿AB翻折,即可得到面积为12的菱形.
解:(1)第一步:在网格上找出点C,使AB=AC且AB⊥AC;
第二步:过C点作AB的平行线;
第三步:过B点作AC的平行线;
第四步:两平行线交于点D,此时四边形ABCD即为所求正方形.
如下图所示:
(2)第一步:选择一个面积为12的平行四边形ABCD;
第二步:找出AB的中点M,过M点作AB的垂线,该垂线与平行四边形ABCD的边CD交于点E;
第三步:连接AE和BE,则△EAB为等腰三角形,且其面积为6;
第四步:在A点下方3个单位长度处做IJ平行AB,将ME延长,交IJ与点F,则四边形AEBF即为所求的面积为12的菱形.
如下图所示:
科目:初中数学 来源: 题型:
【题目】小文想用一张长方形白铁皮做一个长方体无盖盒子,她采取了如下图所示的一个方案(阴影部分是被剪掉的材料,形状为四个相同的正方形).
(1)这块白铁皮的总面积是多少?
(2)这个长方体盒子的表面积是多少?
(3)这个长方体盒子的体积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著 .是《算经十书》中最重要的一部,成于公元一世纪左右 .全书总结了战国、秦、汉时期的数学成就 .同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,其中有一个数学问题“今有垣厚一丈,两鼠对穿 .大鼠日一尺,小鼠亦一尺 .大鼠日自倍,小鼠日自半 .问:何日相逢?”.译文:“有一堵一丈(旧制长度单位,1丈=10尺=100寸)厚的墙,两只老鼠从两边向中间打洞 .大老鼠第一天打一尺,小老鼠也是一尺 .大老鼠每天的打洞进度是前一天的一倍,小老鼠每天的进度是前一天的一半 .问它们几天可以相逢?”请你用所学数学知识方法给出答案:______________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=5cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB.CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】又到了一年中的春游季节,某班学生利用周末到白塔山去参观“晏阳初博物馆”.下面是两位同学的一段对话:
甲:我站在此处看塔顶仰角为60°;
乙:我站在此处看塔顶仰角为30°;
甲:我们的身高都是1.5m;
乙:我们相距20m.
请你根据两位同学的对话,计算白塔的高度.(精确到1米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上.
(1)若BE⊥AD,∠F=62°,求∠A的大小.
(2)若AD=9cm,BC=5cm,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P以每秒一个单位的速度沿着B﹣C﹣A运动,⊙P始终与AB相切,设点P运动的时间为t,⊙P的面积为y,则y与t之间的函数关系图象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只蚂蚁在一个半圆形的花坛的周边寻找食物,如图1,蚂蚁从圆心出发,按图中箭头所示的方向,依次匀速爬完下列三条线路:(1)线段、(2)半圆弧、(3)线段后,回到出发点.蚂蚁离出发点的距离(蚂蚁所在位置与点之间线段的长度)与时间之间的图象如图2所示,问:(注:圆周率的值取3)
(1)请直接写出:花坛的半径是 米, .
(2)当时,求与之间的关系式;
(3)若沿途只有一处有食物,蚂蚁在寻找到食物后停下来吃了2分钟,并知蚂蚁在吃食物的前后,始终保持爬行且爬行速度不变,请你求出:
①蚂蚁停下来吃食物的地方,离出发点的距离.
②蚂蚁返回所用时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.
(1)求二次函数的解析式;
(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.
①求点P的运动路程;
②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;
(3)在(2)的条件下,连结EF,求△PEF周长的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com