精英家教网 > 初中数学 > 题目详情
11.如图,在△ABC中,∠A=90°,AB=AC=2,以BC的中点O为圆心的圆弧分别与AB、AC相切于点D、E,则图中阴影部分的面积是(  )
A.$1-\frac{π}{4}$B.$\frac{π}{4}$C.$1-\frac{π}{2}$D.$2-\frac{π}{2}$

分析 连OD,OE,根据切线的性质得到OD⊥AB,OE⊥AC,则四边形OEAD为正方形,而AB=AC=2,O为BC的中点,则OD=OE=1,再根据正方形的面积公式和扇形的面积公式,利用S阴影部分=S正方形OEAD-S扇形OED,进行计算即可.

解答 解:连OD,OE,如图,
∴OD⊥AB,OE⊥AC,
∵∠A=90°,OE=OD,
∴四边形OEAD为正方形,
∵AB=AC=2,O为BC的中点,
∴OD=OE=$\frac{1}{2}$AC=1,
∴S阴影部分=S正方形OEAD-S扇形OED=1-$\frac{π}{4}$.
故选A.

点评 本题考查了扇形的面积公式:S=$\frac{nπ•{r}^{2}}{360}$,也考查了切线的性质定理以及正方形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.计算21°49′+49°21′=71°10′.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,A(0,4),B(3,0),C(4,2),且反比例函数图象经过点C.
(1)反比例函数解析式为y=$\frac{8}{x}$,直线AB解析式为y=-$\frac{4}{3}$x+4;
(2)在直角坐标系平面内,确定点D,使得以点A、B、C、D为顶点的四边形是平行四边形,请求出点D的坐标;
(3)在反比例函数的第一象限图象上,是否存在点Q,使△ABQ的面积最小?若存在,求出点Q的坐标及最小面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:
(1)$\sqrt{16}-\sqrt{9}+\root{3}{-64}$
(2)|$\sqrt{3}-\sqrt{2}$|+|$\sqrt{3}-2$|+$\sqrt{{{(-2)}^2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如果x=-1,y=2是关于x、y的二元一次方程mx-y=4的一个解,则m=-6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,AC是⊙O的直径,OB是⊙O的半径,PA切⊙O于点A,PB与AC的延长线交于点M,∠COB=∠APB.求证:PB是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC中,点O是AC边上的一动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:EO=FO;
(2)当O点运动到何处时,四边形AECF是矩形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在边长为1的小正方形组成的网格中,△ABC的顶点均在格点上,请按要求完成下列各题:
(1)以直线BC为对称轴△ABC的轴对称图形,得到△A1BC,再将△A1BC绕着点B逆时针旋转90°,得到△A2BC1,请依次画出△A1BC、△A2BC1
(2)以A1为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A3B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)$2\sqrt{12}×\frac{{\sqrt{3}}}{4}÷\sqrt{2}$;                 
(2)$\sqrt{45}$+$\sqrt{108}$+$\sqrt{1\frac{1}{3}}$-$\sqrt{125}$;
(3)($\frac{1}{2}$)-1×($\sqrt{3}$-$\sqrt{2}$)0+$\frac{4}{\sqrt{8}}$-|-$\sqrt{2}$|
(4)$({7+4\sqrt{3}})({7-4\sqrt{3}})-{({3\sqrt{5}-1})^2}$.

查看答案和解析>>

同步练习册答案