精英家教网 > 初中数学 > 题目详情

【题目】已知关于的一元二次方程

(1)若方程有实数根,求实数的取值范围

(2)若方程两实数根分别为,且满足,求实数的值

【答案】(1)m≥-1;(2)m=1.

【解析】

(1)根据判别式的意义得到△=[2(m+1)]2-4(m2-1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=-(2m+1),x1x2=m2-1,再利用完全平方公式变形得到(x1+x22-3x1x2-16=0,则[-2(m+1)]2-3(m2-1)-16=0,解方程得m=-9m=1,然后利用m的取值范围确定满足条件的m的值即可.

(1)由题意有△=[2(m+1)]2-4(m2-1)≥0,

整理得8m+8≥0,

解得m≥-1,

∴实数m的取值范围是m≥-1;

(2)由两根关系,得x1+x2=-(2m+1),x1x2=m2-1,

(x1-x22=16-x1x2,

(x1+x22-3x1x2-16=0,

∴[-2(m+1)]2-3(m2-1)-16=0,

∴m2+8m-9=0,

解得m=-9m=1,

∵m≥-1,

∴m=1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业设计了一款工艺品,每件的成本是元,为了合理定价,投放市场进行试销.据市场调查,销售单价是元时,每天的销售量是件,而销售单价每降低元,每天就可多售出件,但要求销售单价不得低于成本.求销售单价为多少元时,每天的销售利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?请完成下列问题:

(1)未降价之前,某商场衬衫的总盈利为    元.

(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利   元,平均每天可售出   件(用含x的代数式进行表示)

(3)请列出方程,求出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,ACBC,∠ACB90°,DAB边的中点,以D为直角顶点的RtDEF的另两个顶点EF分别落在边ACCB(或它们的延长线)上.

1)如图1,若RtDEF的两条直角边DEDF与△ABC的两条直角边ACBC互相垂直,则SDEF+SCEFSABC,求当SDEFSCEF2时,AC边的长;

2)如图2,若RtDEF的两条直角边DEDF与△ABC的两条直角边ACBC不垂直,SDEF+SCEFSABC,是否成立?若成立,请给予证明;若不成立,请直接写出SDEFSCEFSABC之间的数量关系;

3)如图3,若RtDEF的两条直角边DEDF与△ABC的两条直角边ACBC不垂直,且点EAC的延长线上,点FCB的延长线上,SDEF+SCEFSABC是否成立?若成立,请给予证明;若不成立,请直接写出SDEFSCEFSABC之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形 ABCD 的对角线 AC BD 相交于点 O,CEBD, DEAC , AD2, DE2,则四边形 OCED 的面积为(  )

A. 2 B. 4 C. 4 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,水平地面上竖立着一盏明亮的路灯垂直地面.旁边有级台阶.每级台阶高米,宽米,现有身高米的小明垂直站立在离第一级台阶米的处时.小明的影子刚好落在第一级台阶的边缘处.身高米的小华垂直站立在第四级台阶的边缘处.其影子刚好落在第六级台阶的边缘处.求路灯的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).

1)求yx之间的函数表达式;

2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程与所用时间之间的函数关系.试根据函数图像解答下列问题:

1)小明在途中停留了____,小明在停留之前的速度为____

2)求线段的函数表达式;

3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,时,两人同时到达乙地,求为何值时,两人在途中相遇.

查看答案和解析>>

同步练习册答案