精英家教网 > 初中数学 > 题目详情

【题目】小王某月手机话费中的各项费用统计情况如图表所示,请你根据图表信息完成下列各题

项目

月功能费

基本话费

长途话费

短信费

金额/

4.8

48

   

   

(1)请将表格补充完整;

(2)请将条形统计图补充完整;

(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?

【答案】(1)见解析;(2)见解析; (3)64.8°.

【解析】

(1)由图可知:小王某月手机话费总额为48÷40%=120元,根据长途话费占的比例可得长途话费,再用话费总额减去月功能费、基本话费、长途话费即可求得短信费,据此填写表格即可;

(2)根据(1)中相关数据补全条形图即可;

(3)用360度乘以短信费所占的比例即可得.

1)∵月话费一共48÷40%=120元,

∴长途话费为120×38%=45.6元,

则短信费为120﹣(4.8+48+45.6)=21.6元,

补全表格如下:

项目

月功能费

基本话费

长途话费

短信费

金额/

4.8

48

45.6

21.6

(2)补全条形图如下:

(3)扇形统计图中,表示短信费的扇形的圆心角是360°×=64.8°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场经销水杯,电热水壶两种商品,水杯每个进价15元,售价20元;电热水壶每个进价35元,售价45元.

(1)若该商场同时购进水杯、电热水壶共100件,恰好用去2700元,求能购进水杯、电热水壶各多少个?

(2)商场要求小明用1050元的钱(必须全部用完)采购水杯、电热水壶(或其中一种商品),且还要求总利润不少于340元(假设商品全部卖完),请你确定所有的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在直角坐标系中,四边形ABCO为正方形,A点的坐标为(a0),D点的坐标为(0b),且ab满足(a32+|b|0

1)求A点和D点的坐标;

2)若∠DAEOAB,请猜想DEODEB的数量关系,说明理由.

3)若∠OAD30°,以AD为三角形的一边,坐标轴上是否存在点P,使得△PAD为等腰三角形,若存在,直接写出有多少个点P,并写出P点的坐标,选择一种情况证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为使中华传统文化教育更具有实效性,军宁中学开展以我最喜爱的传统文化种类为主题的调查活动,围绕在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:

(1)本次调查共抽取了多少名学生?

(2)通过计算补全条形统计图;

(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°, CD⊥AB于点D,∠A=30°,BD=1.5cm ,则AB=______cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=ACAB的垂直平分线交ABN,交BC的延长线于M,∠A=40°.

⑴求∠NMB的大小;

⑵若将图中的∠A的度数改为70°,其余条件不变,则∠NMB=

⑶你发现有什么样的规律?若将∠A改为钝角,对这个问题规律性的认识是否需要加以修改?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1在等腰Rt△ABCBAC=90°EAC上(且不与点AC重合.在ABC的外部作等腰Rt△CED使CED=90°连接AD分别以ABAD为邻边作平行四边形ABFD连接AF

1求证AEF是等腰直角三角形

2如图2CED绕点C逆时针旋转当点E在线段BC上时连接AE求证AF=AE

3如图3CED绕点C继续逆时针旋转当平行四边形ABFD为菱形CEDABC的下方时AB=2CE=2求线段AE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ACB=90°,AC=BC=10,在DCE中,∠DCE=90°,DC=EC=6,点D在线段AC上,点E在线段BC的延长线上.将DCE绕点C旋转60°得到D′CE′(点D的对应点为点D′,点E的对应点为点E′),连接AD′、BE′,过点CCNBE′,垂足为N,直线CN交线段AD′于点M,则MN的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,在△ABC和△ADE中,AB=AC=AD=AE,当∠BAC+∠DAE=180° 时,我们称△ABC与△DAE互为“顶补等腰三角形”,△ABC的边BC上的高线AM叫做△ADE的“顶心距”,点A叫做“旋补中心”.

(1)特例感知:在图2,图3中,△ABC与△DAE互为“顶补等腰三角形”,AM是“顶心距”

①如图2,当∠BAC=90°时,AM与DE之间的数量关系为AM=   DE;

②如图3,当∠BAC=120°,ED=6时,AM的长为   

(2)猜想论证:

在图1中,当∠BAC为任意角时,猜想AM与DE之间的数量关系,并给予证明

(3)拓展应用

如图4,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CA=,在四边ABCD的内部找到点P,使得△PAD与△PBC互为“顶补等腰三角形”并回答下列问题

①请在图中标出点P的位置,并描述出该点的位置为

②直接写出△PBC的“顶心距”的长为

查看答案和解析>>

同步练习册答案