【题目】如图,在平行四边形ABCD中,AB=3,BC=5,对角线AC⊥AB.点P从点D出发,沿折线DC﹣CB以每秒1个单位长度的速度向终点B运动(不与点B、D重合),过点P作PE⊥AB,交射线BA于点E,连结BP.设点P的运动时间为t(秒),△BPE的面积为S(平方单位).
(1)AD与BC间的距离是 .
(2)当点P在BC上时,求PE的长(用含t的代数式表示).
(3)求S与t之间的函数关系式.
(4)直接写出PE将平行四边形ABCD的面积分成1:7两部分时t的值.
【答案】(1);(2);(3);(4)t的值为或
【解析】
(1)过点A作AF⊥BC,垂足为F,在三角形ABC中依据勾股定理可求得AC的长,然后依据三角形的面积公式可求得AF的长,从而得到AD与BC之间的距离;
(2)由题意得出3<t<8,如图2所示;由题意可知PE∥AC,从而得到△BPE∽△BCA,由相似三角形的性质可知:,从而可求解;
(3)分0<t≤3时和3<t<8时两种情况,再根据相似三角形的性质进行解答即可;
(4)分0<t≤3时和3<t<8时两种情况,再根据PE将ABCD的面积分成1:7的两部分进行解答即可.
(1)过A作AF⊥BC于F点,如图1:
∵AC⊥AB,AB=3,BC=5,
∴AC= ,
∴△ACB的面积=AC×AB=BC×AF,
解得:AF=,
∴AD与BC间的距离等于.
故答案为:;
(2)∵AC⊥AB,
∴AC=,
当点P在BC上时,3<t<8,如图2:
∵PE⊥AB,AC⊥AB,
∴PE∥AC,
∴△BPE∽△BCA,
∴,即,
解得:PE=;
(3)∵边形ABCD是平行四边形,
∴AB∥CD,AB=CD=3,AD∥BC,AD=BC=5,
∵AC⊥AB,PE⊥AB,
∴AC∥PE,
①当0<t≤3时,
设PE与AD的交点为F,如图3:
则四边形ACPE是平行四边形,
∴PE=AC=4,AE=PC=CD-PD=3-t,
∴BE=AB+AE=3+3-t=6-t,
∴S=BE×PE=×(6-t)×4=12-2t,
即S与t之间的函数关系式为S=12-2t;
②当3<t<8时,如图4:
延长DC、EP交于点G,
则DG⊥EG,四边形AEGC是平行四边形,
∴GE=AC=4,AE=CG,
∵AB∥CD,
∴∠B=∠PCG,
∵∠BAC=∠PGC,
∴△CPG∽△BCA,
∴ ,即,
解得:CG=,PG=,
∴AE=CG=,PE=EG-PG=4-=,
∴BE=AB-AE=3-= ,
∴S=BE×PE=×= ,
即S与t之间的函数关系式为S=;
综上所述,
(4)PE将ABCD的面积分成1:7的两部分,ABCD的面积=AB×AC=3×4=12,
①当0<t≤3时,如图2所示:
∵AC⊥AB,PE⊥AB,
∴PF∥AC,
∴△DPF∽△DCA,
∴ ,即,
解得:PF=,
∴△PDF的面积=PD×PF=t2;
∴,
解得:t=(负值舍去);
②当3<t<8时,如图4所示:
S=,
解得:t=,或t=(不符合题意,舍去).
综上所述,PE将平行四边形ABCD的面积分成1:7两部分时t的值为或.
科目:初中数学 来源: 题型:
【题目】某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A种产品用甲种原料9千克,乙种原料3千克,可获利700元;生产一件B种产品用甲种原料4千克,乙种原料10千克,可获利1200元.
(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;
(2)设生产A、B两种产品总利润为y元,其中一种产品生产件数为x件,试写出y与x之间的函数关系式,并利用函数的性质说明那种方案获利最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象过A(﹣3,m),B(5,m),C(0,m+2),D(﹣1,y1),E(﹣5,y2),F(6,y3),则函数值y1,y2,y3的大小关系是( )
A.y2<y3<y1B.y3<y1<y2C.y2<y1<y3D.y1<y3<y2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=﹣1和x=3时,y值相等.直线y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.
(1)求这条抛物线的表达式.
(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.
①求t的取值范围.
②若使△BPQ为直角三角形,请求出符合条件的t值;
③t为何值时,四边形ACQP的面积有最小值,最小值是多少?直接写出答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,BC>AB,在BC边上取点D,使AB=BD,构造正方形ABDE,DE交AC于点F,作EG⊥AC交AC于点G,交BC于点H.
(1)求证:EF=DH;
(2)若AB=6,DH=2DF,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.点A2,B2,C2分别是边B1C1,A1C1,A1B1的中点;点A3,B3,C3分别是边B2C2,A2C2,A2B2的中点;…以此类推,则第2020个三角形的周长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线(m>0)与x轴的交点为A,B.
(1)求抛物线的顶点坐标;
(2)横、纵坐标都是整数的点叫做整点.
①当m=1时,求线段AB上整点的个数;
②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com