【题目】如图1,在边长为1的正方形ABCD中,动点E,F分别在边AB,CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,设BE=x.
(1)当AM=时,求x的值;
(2)如图2,连接BM、过B点作BH⊥MN,垂足为H,求证:BM是∠ABH的角平分线;
(3)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;
(4)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.
【答案】(1)x=.(2)证明见解析;(3)不变,△DMP的周长为2;(4)S=(2x-),面积的最小值为.
【解析】
(1)利用勾股定理构建方程,即可解决问题;
(2)通过证明△BAM≌△BHM进而可得∠ABM=∠MBH,即可得证;
(3)设AM=y,则BE=EM=x,MD=1﹣y,在Rt△AEM中,由勾股定理得出x、y的关系式,可证Rt△AEM∽Rt△DMP,根据相似三角形的周长比等于相似比求△DMP的周长;
(4)作FH⊥AB于H.则四边形BCFH是矩形.连接BM交EF于O,交FH于K.根据梯形的面积公式构建二次函数,利用二次函数的性质解决最值问题即可;
解:(1)如图,在Rt△AEM中,AE=1﹣x,EM=BE=x,AM=,
∵AE2+AM2=EM2,
∴(1﹣x)2+()2=x2,
∴x=.
(2)∵EB=EM,
∴∠EBM=∠EMB.
∵∠EBC=∠EMN,
∴∠MBC=∠BMN.
∵AD∥BC,
∴∠MBC=∠AMB,
∴∠AMB=∠BMN,
又∵∠A=∠MHB,BM=BM,
∴△BAM≌△BHM.
∴∠ABM=∠MBH,
∴BM是∠ABH的角平分线;
(3)△DMP的周长不变,为2.
理由:设AM=y,则BE=EM=x,MD=1﹣y,
在Rt△AEM中,由勾股定理得AE2+AM2=EM2,
∴(1﹣x)2+y2=x2,
解得1+y2=2x,
∴1﹣y2=2(1﹣x)
∵∠EMP=90°,∠A=∠D,
∴Rt△AEM∽Rt△DMP,
∴=,
即=,
解得DM
∴△DMP的周长不变,为2.
(4)作FH⊥AB于H.连接BM交EF于O,交FH于K.
则四边形BCFH是矩形.
在Rt△AEM中,AM==,
∵B、M关于EF对称,
∴BM⊥EF,
∴∠KOF=∠KHB,
∵∠OKF=∠BKH,
∴∠KFO=∠KBH,
∵AB=BC=FH,∠A=∠FHE=90°,
∴△ABM≌△HFE,
∴EH=AM=,
∴CF=BH=x﹣,
∴S=(BE+CF)BC
=(x+x﹣)
=(2x﹣)
= [()2﹣+1]
=(﹣)2+.
∴S=(2x﹣),
当=时,S有最小值=.
科目:初中数学 来源: 题型:
【题目】一张矩形纸板和圆形纸板按如图方式分别剪得同样大定理特例图(AC=3,BC=4,AB=5,分别以三边长向外剪正方形) ,图1中边HI、LM和点K、J都恰好在矩形纸板的边上,图2中的圆心O在AB中点处,点H、I都在圆上,则矩形和圆形纸板的面积比是( )
A.400:127πB.484:145πC.440:137πD.88:25π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在的网格中,每个小正方形的边长都为.网格线的交点称为格点,以格点为顶点的三角形称为格点三角形.已知直线及格点,,连接.
(1)请根据以下要求依次画图:
①在直线的左边画出一个格点(点不在直线上),且满足格点是直角三角形;
②画出关于直线的轴对称.
(2)满足(1)的面积的最大值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,四边形ABCD是边长为5的菱形,顶点A.C.D均在坐标轴上,sinB=.
(1)求过A,C,D三点的抛物线的解析式;
(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1>y2时,自变量x的取值范围;
(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A,E两点之间的一个动点,且直线PE交x轴于点F,问:当P点在何处时,△PAE的面积最大?并求出面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:两直角边比为1:2的直角三角形叫做和合三角形.
(1)如图1,△ABC中,∠C= ,AC=3,BC=4,AD平分∠CAB交BC于点D,说明△ACD是和合三角形;
(2)如图2,和合△ABC中,∠C= ,AC= ,点D是边AB中点,点E是边AC上一动点,在直线DE下方构造矩形DEFG,使直线FG始终经过BC中点M,已知△ABC面积为4,求矩形DEFG的面积;
(3)如图3,扇形OAB中,∠AOB= ,OA=2.以点O为原点,OA,OB所在直线为坐标轴建立平面直角坐标系,点P是 一动点,点Q是直线y=3上一动点,当△OPQ是和合三角形时,求点P坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,P是矩形内一点,沿、、、把这个矩形剪开,然后把两个阴影三角形拼成一个四边形,则这个四边形的面积为_________;这个四边形周长的最小值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有【 】
A.1组 B.2组 C.3组 D.4组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼三楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为
A.9米B.6米C.6米D.(6+)米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.
求证:(1)△ABE≌△CDF;
(2)四边形EBFD是平行四边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com