| A. | 2 | B. | $\frac{10}{3}$ | C. | $\frac{15}{8}$ | D. | $\frac{15}{2}$ |
分析 根据勾股定理求出BC,根据线段垂直平分线性质求出AE=BE,根据勾股定理求出AE,再根据勾股定理求出DE即可.
解答 解:在Rt△ACB中,由勾股定理得:BC=$\sqrt{{5}^{2}-{3}^{2}}$=4,
连接AE,![]()
从作法可知:DE是AB的垂直平分线,
根据性质得出AE=BE,
在Rt△ACE中,由勾股定理得:AC2+CE2=AE2,
即32+(4-AE)2=AE2,
解得:AE=$\frac{25}{8}$,
在Rt△ADE中,AD=$\frac{1}{2}$AB=$\frac{5}{2}$,由勾股定理得:DE2+($\frac{5}{2}$)2=($\frac{25}{8}$)2,
解得:DE=$\frac{15}{8}$.
故选C.
点评 本题考查了线段垂直平分线性质,勾股定理的应用,能灵活运用勾股定理得出方程是解此题的关键.
科目:初中数学 来源: 题型:选择题
| A. | y=x2+x-3 | B. | y=2(x-1)2-3 | C. | y=$\frac{1}{2}$(x-1)(x+1) | D. | y=3x2-3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 无数个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (-2,1-$\sqrt{2}$) | B. | (-2,$\sqrt{2}-1$) | C. | (1-$\sqrt{2}$,-2) | D. | ($\sqrt{2}-1,-2$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com