精英家教网 > 初中数学 > 题目详情

【题目】如图,BDO的直径,ACO的弦,ABACADBC于点EAE2ED4,延长DB到点F,使得BFBO,连接FA.则下列结论中不正确的是(  )

A. ABE∽△ADBB. ABC=∠ADB

C. AB3D. 直线FAO相切

【答案】C

【解析】

ABAC,得出,由圆周角定理得出∠ABC=∠ADB,由公共角∠BAE=∠DAB,得出ABE∽△ADB,选项AB正确;由相似三角形的性质得出ABADAEAB,求出AB,选项C错误;连接OA,由圆周角定理得出∠BAD90°,由勾股定理得出BD,得出OAOBAB,证出∠OAF90°,∴直线FA与⊙O相切,选项D正确;即可得出结论.

ABAC

∴∠ABC=∠ADB

∵∠BAE=∠DAB

∴△ABE∽△ADB,选项AB正确;

ABADAEAB

AB2AE×AD22+4)=12

AB,选项C错误;

连接OA,如图所示:

BD为⊙O的直径,

∴∠BAD90°

BD

OAOBAB

BFBO

ABOBBF

∴∠OAF90°

∴直线FA与⊙O相切,选项D正确;

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD,点P在射线CB上运动(不包含点BC),连接DP,交AB于点M,作BEDP于点E,连接AE,作∠FAD=EABFADP于点F

(1)如图a,当点PCB的延长线上时,

①求证:DF=BE

②请判断DEBEAE之间的数量关系并证明;

(2)如图b,当点P在线段BC上时,DEBEAE之间有怎样的数量关系?请直接写出答案,不必证明;

(3)如果将已知中的正方形ABCD换成矩形ABCD,且ADAB=1,其他条件不变,当点P在射线CB上时,DEBEAE之间又有怎样的数量关系?请直接写出答案,不必证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以AB为直径作O,过点AO的切线AC,连结BC,交O于点D,点EBC边的中点,连结AE

(1)求证:∠AEB=2∠C

(2)若AB=6,,求DE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板AB始终与底座平行,连接杆DED点固定,点EAB处滑动,压柄BC绕着转轴B旋转.已知连接杆BC的长度为20cmBD=cm,压柄与托板的长度相等.

1)当托板与压柄的夹角∠ABC=30°时,如图①点EA点滑动了2cm,求连接杆DE的长度.

2)当压柄BC从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E滑动的距离.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走9m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.

1)求∠BPQ的度数;

2)求该电线杆PQ的高度.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点CE在⊙O上,∠B=2ACE,在BA的延长线上有一点P,使得∠P=BAC,弦CEAB于点F,连接AE

1)求证:PE是⊙O的切线;

2)若AF=2AE=EF=,求OA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D

(1)求证:AC是⊙O的切线;

(2)如图2,连接CD,若tanBCD,⊙O的半径为,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了掌握我区中考模拟数学试题的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,将随机抽取的部分学生成绩(得分为整数,满分为130)分为5组:第一组5570;第二组7085;第三组85100;第四组100115;第五组115130,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:

(1)本次调查共随机抽取了__ _名学生;

(2)补全频数分布直方图;

(3)将得分转化为等级,规定:得分低于70分评为D70100分评为C10011评为B115130分评为A,根据目前的统计,请你估计全区该年级4500名考生中,考试成绩评为B级及其以上的学生大约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学概念

在两个等腰三角形中,如果其中一个三角形的底边长和底角的度数分别等于另一个三角形的腰长和顶角的度数,那么称这两个等腰三角形互为姊妹三角形.

概念理解

1)如图①,在ABC中,ABAC,请用直尺和圆规作出它的姊妹三角形(保留作图痕迹,不写作法).

特例分析

2)①在ABC中,ABAC,∠A30°,求它的姊妹三角形的顶角的度数和腰长;

②如图②,在ABC中,ABACDAC上一点,连接BD.若ABCABD互为姊妹三角形,且ABC∽△BCD,则∠A   °

深入研究

3)下列关于姊妹三角形的结论:

①每一个等腰三角形都有姊妹三角形;

②等腰三角形的姊妹三角形是锐角三角形;

③如果两个等腰三角形互为姊妹三角形,那么这两个三角形可能全等;

④如果一个等腰三角形存在两个不同的姊妹三角形,那么这两个三角形也一定互为姊妹三角形.

其中所有正确结论的序号是   

查看答案和解析>>

同步练习册答案