【题目】如果关于的一元二次方程有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.
(1)①方程 半等分根方程(填“是”或“不是”);
②若是半等分根方程,则代数式 ;
(2)若点在反比例函数的图象上,则关于的方程是半等分根方程吗?并说明理由;
(3)如果方程是半等分根方程,且相异两点,都在抛物线上,试说明方程的一个根为.
【答案】(1)①不是;②0;(2)若点在反比例函数的图象上,则关于的方程是半等分根方程,理由详见解析;(3)详见解析
【解析】
(1)①解方程,根据“半等分根方程”定义作出判断即可;②解方程得,,所以或,即:n=-2m或m=-2n,分别代入代数式结果均为0
(2)根据点在反比例函数的图象上,得到,代入,得到关于x的方程,解方程,用含p的式子表示x,根据“半等分根方程”定义判断即可;
(3)根据两点,都在抛物线上,且纵坐标相等,可以求出对称轴为,根据方程是半等分根方程,得到两根关系,根据抛物线对称轴为
,即可求出两个根,问题得证.
解:(1)①解方程得,不符合“半等分根方程”定义,
故答案为:不是;
②解方程得,,所以或,即:n=-2m或m=-2n,
当n=-2m时,;
当m=-2n时,;
故答案为:0;
(2)若点在反比例函数的图象上,则关于的方程是半等分根方程
理由:∵点在反比例函数的图象上
∴代入方程得:
解得:,
∵
∴方程是半等分根方程
(3)∵相异两点,都在抛物线上,
∴抛物线的对称轴为:
又∵方程是半等分根方程
∴设的两个根分别为和
令则有:
所以,
所以方程的一个根为得证.
科目:初中数学 来源: 题型:
【题目】甲、乙二人均从A地出发,甲以60米/分的速度向东匀速行进,10分钟后,乙以(60+m)米/分的速度按同样的路线去追赶甲,乙出发5.5分钟后,甲以原速原路返回,在途中与乙相遇,相遇后两人均停止行进.设乙所用时间为t分钟.
(1)当m=6时,解答:
①设甲与A地的距离为,分别求甲向东行进及返回过程中,与t的函数关系式(不写t的取值范围);
②当甲、乙二人在途中相遇时,求甲行进的总时间.
(2)若乙在出发9分钟内与甲相遇,求m的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
操作发现:
如图1和图2,已知点为正方形的边和上的一个动点(点,,除外),作射线,作于点,于点,于点.
(1)如图1,当点在上(点,除外)运动时,求证:;
(2)如图2,当点在上(点,除外)运动时,请直接写出线段,,之间的数量关系;
拓广探索:
(3)在(1)的条件下,找出与相等的线段,并说明理由;
(4)如图3,若点为矩形的边上一点,作射线,作于点,于点,于点.若,,则_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下表:
序号 | 1 | 2 | 3 | … |
图形 | … |
我们把某格中字母和所得到的多项式称为特征多项式,例如:
第1格的“特征多项式”为;
第2格的“特征多项式”为.
回答下列问题:
(1)第3格的“特征多项式”为________________,
第4格的“特征多项式”为______________________,
第格的“特征多项式”为___________________;
(2)若第1格的“特征多项式”的值为,第2格的“特征多项式”的值为,求的值;
(3)在(2)的条件下,第格的特征多项式的值为,则直接写出的值;若没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校初一、初二年级各有500名学生,为了解两个年级的学生对消防安全知识的掌握情况,学校从初一、初二年级各随机抽取20名学生进行消防安全知识测试,满分100分,成绩整理分析过程如下,请补充完整:
(收集数据)
初一年级20名学生测试成绩统计如下:
78 56 74 81 95 75 87 70 75 90 75 79 86 60 54 80 66 69 83 97
初二年级20名学生测试成绩不低于80,但是低于90分的成绩如下:
83 86 81 87 80 81 82
(整理数据)按照如下分数段整理、描述两组样本数据:
成绩 | 0 | ||||
初一 | 2 | 3 | 7 | 5 | 3 |
初二 | 0 | 4 | 5 | 7 | 4 |
(分析数据)两组样本数据的平均数、中位数、众数、方差如下表所示:
年级 | 平均数 | 中位数 | 众数 | 方差 |
初一 | 76.5 | 76.5 | 132.5 | |
初二 | 79.2 | 74 | 100.4 |
(1)直接写出,的值;
(2)根据抽样调查数据,估计初一年级消防安全知识测试成绩在70分及其以上的大约有多少人?
(3)通过以上分析,你认为哪个年级对消防安全知识掌握得更好,并说明推断的合理性.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像交与A(4,-2),B(-2,n)两点,与轴交与点C.
(1)求,n的值;
(2)请直接写出不等式的解集;
(3)点A关于轴对称得到点A’,连接A’B,A’C,求△A’BC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,C是⊙O上的一点(不与点A,B重合),过点C作AB的垂线交⊙O于点D,垂足为E点.
(1)如图1,当AE=4,BE=2时,求CD的长度;
(2)如图2,连接AC,BD,点M为BD的中点.求证:ME⊥AC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com