精英家教网 > 初中数学 > 题目详情

【题目】如图,点O为直线AB上一点,过点O作直线OC,已知∠AOC≠90°,射线OD平分∠AOC,射线OE平分∠BOC,射线OF平分∠DOE

1)求∠DOE和∠DOF的度数;

2)若∠DOC=3COF,求∠AOC的度数;

3)求∠BOF+DOC的度数.

【答案】1)∠DOE=90°,∠DOF=45°;(2)∠AOC=67.5° ;(3)∠BOF+DOC=135°

【解析】

(1)根据 射线OD平分∠AOC,射线OE平分∠BOC,即可求出∠DOE,再根据OF平分∠DOE,即可求出∠DOF的度数;

2),由∠DOC=3COF,得出∠DOC的度数,再根据OD平分∠AOC,即可求得∠AOC的度数.

3)先根据射线OD平分∠AOC,∠AOD=COD,得到,,再根据∠AOC+BOC=180°,得出∠DOE=90°,由射线OF平分∠DOE,得∠DOF=EOF=45°,从而求得∠FOB+DOC的度数;

(1)

.

2)∵∠DOC=3COF

OD平分∠AOC

.

(3)OD平分∠AOC,∴

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,∠BAC>90°,点DBC的中点,点EAC上,将CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是(  )

A. AE=EF B. AB=2DE

C. ADFADE的面积相等 D. ADEFDE的面积相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:各类方程的解法:求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程,可以通过因式分解把它转化为,可得,所以x=0或x+2=0或x-1=0,所以方程:的解是x1=0,x2=-2,x3=1;

(1)问题:用“转化”思想求方程的解

(2)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某区为调查学生的视力变化情况,从全区九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成折线统计图和扇形统计图如下:

解答下列问题:

(1)该区共抽取了多少名九年级学生?

(2)若该区共有9万名九年级学生,请你估计2018年该区视力不良(4.9以下)的该年级学生大有多少人?

(3)扇形统计图中B的圆心角度数为____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,现有两条乡村公路ABBCAB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路ABBCC处行驶;另一人骑自行车从B处以5m/s的速度从BC行驶,并且两人同时出发.

1)求经过多少秒摩托车追上自行车?

2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图6,在平面直角坐标系中,一次函数=+1的图象交轴于点D,与反比例函数=的图象在第一象限相交于点A.过点A分别作轴的垂线,垂足为点BC.

(1)点D的坐标为 ;

(2)当AB=4AC时,求值;

(3)当四边形OBAC是正方形时,直接写出四边形ABOD与△ACD面积的比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程

(1) (2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一天,某交警巡逻车在东西方向的青年路上巡逻,他从岗亭出发,晚上停留在.规定向东方向为正,向西方向为负,当天行驶情况记录如下(单位:千米):

+5-8+10-12+6-18+5-2.

1处在岗亭的什么方向?距离岗亭多远?

2)若巡逻车每行驶1千米耗油0.1升,这一天共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图为放置在水平桌面上的台灯的平面示意图,可伸缩式灯臂AO长为40 cm,与水平面所形成的夹角∠OAM恒为75°(不受灯臂伸缩的影响).由光源0射出的光线沿灯罩形成光线OC,OB,与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°.

(1)求该台灯照亮桌面的宽度BC.(不考虑其他因素,结果精确到1 cm,参考数据:sin75°≈0.97,cos75°≈0.26, ≈1.73)

(2)若灯臂最多可伸长至60 cm,不调整灯罩的角度,能否让台灯照亮桌面85 cm的宽度?

查看答案和解析>>

同步练习册答案