【题目】快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为千米,慢车行驶的路程为千米.如图中折线OAEC表示与x之间的函数关系,线段OD表示与x之间的函数关系.
请解答下列问题:
(1)求快车和慢车的速度;
(2)求图中线段EC所表示的与x之间的函数表达式;
(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.
【答案】(1)快车的速度为90千米/小时,慢车的速度为60千米/小时;(2);(3)点F的坐标为,点F代表的实际意义是在4.5小时时,甲车与乙车行驶的路程相等.
【解析】
(1)根据函数图象中的数据可以求得快车和慢车的速度;
(2)根据函数图象中的数据可以求得点E和点C的坐标,从而可以求得与x之间的函数表达式;
(3)根据图象可知,点F表示的是快车与慢车行驶的路程相等,从而以求得点F的坐标,并写出点F的实际意义.
(1)快车的速度为:千米/小时,
慢车的速度为:千米/小时,
答:快车的速度为90千米/小时,慢车的速度为60千米/小时;
(2)由题意可得,
点E的横坐标为:,
则点E的坐标为,
快车从点E到点C用的时间为:(小时),
则点C的坐标为,
设线段EC所表示的与x之间的函数表达式是,
,得,
即线段EC所表示的与x之间的函数表达式是;
(3)设点F的横坐标为a,
则,
解得,,
则,
即点F的坐标为,点F代表的实际意义是在4.5小时时,甲车与乙车行驶的路程相等.
科目:初中数学 来源: 题型:
【题目】每年5月份是心理健康宣传月,某中学开展以“关心他人,关爱自己”为主题的心理健康系列活动.为了解师生的心理健康状况,对全体2000名师生进行了心理测评,随机抽取20名师生的测评分数进行了以下数据的整理与
①数据收集:抽取的20名师生测评分数如下
85,82,94,72,78,89,96,98,84,65,73,54,83,76,70,85,83,63,92,90.
②数据整理:将收集的数据进行分组并评价等第:
分数x | |||||
人数 | 5 | a | 5 | 2 | 1 |
等第 |
③数据绘制成不完整的扇形统计图:
④依据统计信息回答问题
(1)统计表中的 .
(2)心理测评等第等的师生人数所占扇形的圆心角度数为 .
(3)学校决定对等的师生进行团队心理辅导,请你根据数据分析结果,估计有多少师生需要参加团队心理辅导?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与轴相交于点、,与轴相交于点.
求该函数的表达式;
点为该函数在第一象限内的图象上一点,过点作,垂足为点,连接.
①求线段的最大值;
②若以点、、为顶点的三角形与相似,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xoy中(如图),已知一次函数的图像平行于直线,且经过点A(2,3),与x轴交于点B。
(1)求这个一次函数的解析式;
(2)设点C在y轴上,当AC=BC时,求点C的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温(℃)与开机后用时()成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温(℃)与时间()的关系如图所示:
(1)分别写出水温上升和下降阶段与之间的函数关系式;
(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=58°,则∠ABC的度数为( )
A. 29°B. 30°C. 31°D. 32°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下图,在平面直角坐标系中,直线:+n与y轴交于点A 与反比例函数的图象交于B (-2,-2),直线过B点与x轴交于点C,OA:OC= 4:3.
(1)求m的值以及直线的函数表达式;
(2)连接AC,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点的坐标为,且,抛物线图象经过三点.
(1)求两点的坐标;
(2)求抛物线的解析式;
(3)若点是直线下方的抛物线上的一个动点,作于点,当的值最大时,求此时点的坐标及的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】湖南省作为全国第三批启动高考综合改革的省市之一,从2018年秋季入学的高中一年级学生开始实施高考综合改革.深化高考综合改革,承载着广大考生的美好期盼,事关千家万户的切身利益,社会关注度高.为了了解我市某小区居民对此政策的关注程度,某数学兴趣小组随机采访了该小区部分居民,根据采访情况制做了如统计图表:
关注程度 | 频数 | 频率 |
A.高度关注 | m | 0.4 |
B.一般关注 | 100 | 0.5 |
C.没有关注 | 20 | n |
(1)根据上述统计图表,可得此次采访的人数为 ,m= ,n= .
(2)根据以上信息补全图中的条形统计图.
(3)请估计在该小区1500名居民中,高度关注新高考政策的约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com