精英家教网 > 初中数学 > 题目详情

【题目】
(1)计算:3×(﹣2)2﹣|﹣4|﹣6×
(2)先化简,再求值: x﹣2( x2﹣y2)﹣[2y﹣(x2﹣2y2)],其中x=2,y=﹣4.

【答案】
(1)解:原式=3×4﹣4﹣9=12﹣13=﹣1
(2)解:原式= x﹣x2+2y2﹣2y+x2﹣2y2= x﹣2y,
当x=2,y=﹣4时,原式=1+8=9
【解析】(1)运算顺序是:先算乘方和绝对值运算,再算乘方运算,然后进行减法运算。
(2)先去括号,再合并同类项,化简,再代入求值即可。
【考点精析】本题主要考查了有理数的四则混合运算和代数式求值的相关知识点,需要掌握在没有括号的不同级运算中,先算乘方再算乘除,最后算加减;求代数式的值,一般是先将代数式化简,然后再将字母的取值代入;求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣4,0),B点坐标为(6,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为

(1)求抛物线的解析式;

(2)如图①,将△ADE以DE为轴翻折,点A的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;

(3)如图②,当点E在线段AB上运动时,抛物线的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB= ,则图中阴影部分的面积为(
A.1
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,点EAB上,以AE为直径的⊙OBC相切于点D,连接AD

(1)求证:AD平分∠BAC;

(2)若⊙O的直径为10,sin∠DAC=,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解,我们把依次连接任意一个四边形各边中点得到的四边形叫中点四边形,如图1,在四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,依次连接各边中点得到中点四边形EFGH.
(1)这个中点四边形EFGH的形状是
(2)如图2,在四边形ABCD中,点M在AB上且△AMD和△MCB为等边三角形,E、F、G、H分别为AB、BC、CD、AD的中点,试判断四边形EFGH的形状并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P是Rt△ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F.
(1)如图1,当点P为AB的中点时,连接AF,BE.求证:四边形AEBF是平行四边形;
(2)如图2,当点P不是AB的中点,取AB的中点Q,连接EQ,FQ.试判断△QEF的形状,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD,则四边形ABCD面积的最大值是(
A.15
B.16
C.19
D.20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的中线.
(1)画图:延长AD到E,使ED=AD,连接BE、CE;
(2)四边形ABEC是平行四边形吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.

查看答案和解析>>

同步练习册答案