精英家教网 > 初中数学 > 题目详情

【题目】对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.

例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A, C的“联盟点”.

1)若点A表示数-2, 点B表示的数2,下列各数,0,4,6所对应的点分别C1C2 C3 C4,其中是点A,B的“联盟点”的是

(2)点A表示数-10, 点B表示的数30,P在为数轴上一个动点:

①若点P在点B的左侧,且点P是点A, B的“联盟点”,求此时点P表示的数;

②若点P在点B的右侧,点PA, B中,有一个点恰好是其它两个点的“联盟点”,写出此时点P表示的数 .

【答案】1;(2)①-50;②5070110.

【解析】

1)题目给定的规律,联盟点必须满足其中一个点与其它两个点的距离恰好满足2倍的数量关系,根据规律找出即可(2)已知点A的大小,点B的大小,根据不同的位置分别找出点P的坐标即可.

解:(1

2)① 设点P表示的数为x

如图,当点在点A左侧时,

30x2(-10x),

解得 x=-50.

所以点表示的数为-50

如图,当点在线段AB上且时,

30x2x10),

解得 x.

所以点表示的数为

如图,当点在线段AB上且时,

x10230x),

解得 x.

所以点表示的数为.

综上所述,当点P在点B的左侧时,点P表示的数为-50或.

50或70或110.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】完成下列推理过程:

已知:如图,∠1+2=180°,3=B

求证:∠EDG+DGC=180°

证明:∵∠1+2=180°(已知)

1+DFE=180°(   

∴∠2=      

EFAB(   

∴∠3=      

又∵∠3=B(已知)

∴∠B=ADE(   

DEBC(   

∴∠EDG+DGC=180°(   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.AOC=COB,则∠BOF=_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+8(a≠0)与x轴交于A(﹣2,0),B两点,与y轴交于C点,tan∠ABC=2.
(1)求抛物线的表达式及其顶点D的坐标;
(2)过点A、B作x轴的垂线,交直线CD于点E、F,将抛物线沿其对称轴向上平移m个单位,使抛物线与线段EF(含线段端点)只有1个公共点.求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义一种对正整数n的“C运算”:①当n为奇数时,结果为3n1;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行.例如,n66时,其“C运算”如下

n26,则第2019次“C运算”的结果是

A. 40 B. 5 C. 4 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知直线l1:y=mx(m≠0)与直线l2:y=ax+b(a≠0)相交于点A(1,2),直线l2与x轴交于点B(3,0).

(1)分别求直线l1和l2的表达式;
(2)过动点P(0,n)且平行于x轴的直线与l1 , l2的交点分别为C,D,当点C位于点D左方时,写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和△BC′F的周长之和为(
A.3
B.4
C.6
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,A=C=90°,BE、DF分别是ABC、ADC的平分线.求证:

(1)、1+2=90°;(2)、BEDF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

(1)2

(2)=﹣1

查看答案和解析>>

同步练习册答案