精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在同一条直线上,M,N分别为BE,CD的中点.

(1)求证:△ABE≌ACD;

(2)判断△AMN的形状,并说明理由.

【答案】(1)证明见解析(2)△AMN为等腰三角形;理由见解析

【解析】

(1)由∠BAC=DAE,等式左右两边都加上∠CAE,得到一对角相等,再由AB=AC,AD=AE,利用SAS可得出三角形ABE与三角形ACD全等;
(2)由MN分别为BE,CD的中点,且BE=CD,可得出ME=ND,由△ABE与△ACD全等,对应角∠AEB=ADC,利用SAS可得出△AME与△AND全等,利用全等三角形的对应边相等可得出AM=AN,即△AMN为等腰三角形.

(1)∵∠BAC=DAE,

∴∠BAC+CAE=DAE+CAE,即∠BAE=CAD,

ABEACD中,

∴△ABE≌△ACD(SAS);

(2)ABE≌△ACD

BE=CD,AEM=ADC,

M、N分别为BE、CD的中点,

ME=ND,

AEMADN中,

∴△AEM≌△ADN(SAS),

AM=AN,

AMN为等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:

碟子的个数

碟子的高度(单位:cm

1

2

2

2+1.5

3

2+3

4

2+4.5

1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);

2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.

(1)求抛物线的解析式并写出其顶点坐标;

(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.

当PANA,且PA=NA时,求此时点P的坐标;

当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别以长方形OABC的边OCOA所在直线为x轴、y轴,建立平面直角坐 标系.已知AO=13AB=5,点E在线段OC上,以直线AE为轴,把△OAE翻折,点O的对应点D恰好落在线段BC.则点E的坐标为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】满足下列条件的三角形中,不是直角三角形的是( )

A.A-B=CB.A:∠B:∠C=3 4 7

C.A=2B=3CD.A=9°,∠B=81°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:若在一个两位正整数N的个位数字与十位数字之间添上数字6,组成一个新的三位数,我们称这个三位数为N至善数,如34至善数为364”;若将一个两位正整数M6后得到一个新数,我们称这个新数为M明德数,如34明德数为40”

130至善数   明德数   

2)求证:对任意一个两位正整数A,其至善数明德数之差能被9整除;

3)若一个两位正整数B的明德数的各位数字之和是B的至善数各位数字之和的一半,求B的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长米),用木栏围成三个大小相等的长方形,木栏总长24米,总面积为32平方米.

1)若墙长米,求ABBC的长.

2)若米的墙长对鸡舍的长和宽是否有影响?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知abc是等腰三角形ABC的三条边,其中a=2,如果bc是关于x的一元二次方程的两个根,则m_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:

如图①,在四边形ABCD中,ABAD,∠BAD120°,∠B=∠ADC90°.EF分别是BCCD上的点.且∠EAF60°.探究图中线段BEEFFD之间的数量关系.

解法探究:小明同学通过思考,得到了如下的解决方法.

延长FD到点G,使DGBE,连结AG,先证明ABE≌△ADG,再证明AEF≌△AGF,从而可得结论.

1)请先写出小明得出的结论,并在小明的解决方法的提示下,写出所得结论的理由.

解:线段BEEFFD之间的数量关系是: .

理由:延长FD到点G,使DGBE,连结AG.(以下过程请同学们完整解答)

2)拓展延伸:

如图②,在四边形ABCD中,ABAD,若∠B+D180°EF分别是BCCD上的点.且∠EAFBAD,则(1)中的结论是否仍然成立?若成立,请再把结论写一写;若不成立,请直接写出你认为成立的结论.

查看答案和解析>>

同步练习册答案