精英家教网 > 初中数学 > 题目详情
甲、乙两车在连通A、B、C三地的公路上行驶,甲车从A地出发匀速向C地行驶,中途到达B地并在B地停留1小时后按照原速驶向C地;同时乙车从C地出发匀速向A地行驶,到达A地后,立即按原路原速返回到C地并停留,在两车行驶的过程中,甲、乙两车距各自出发地的路程y(千米)与行驶时间x(小时)之间的函数关系如图所示,请结合图象回答下列问题:
(1)求甲、乙两车的速度,并求出A、B两地的距离;
(2)求甲车从B驶向C地的过程中,y与x之间的函数关系式;
(3)请直接写出甲、乙两车在行驶中多长时间距B地的路程相等.
考点:一次函数的应用
专题:
分析:(1)根据函数图象得出AB两地的距离,由行程问题的数量关系由路程÷时间=速度就可以求出结论;
(2)先由行程问题的数量关系求出C的坐标,设y与x之间的函数关系式为y=kx+b,由待定系数法就可以求出结论;
(3)根据行程问题的数量关系求出乙车往返的时间,设直线DE的解析式为y=k1x+b1,由待定系数法求出结论,与(2)解析式构成方程组求出其解即可.
解答:解:(1)由函数图象,得
A、B两地的距离为:80千米.
甲车的速度为:80÷2=40千米/小时,
乙车的速度为:240÷3=80千米/小时.
答:甲车的速度为40千米/小时,乙车的速度为80千米/小时,A、B两地的距离为80千米;
(2)由题意,得
B(3,80).
甲车从B到C的时间为:(240-80)÷40=4,
∴C(7,240).B(3,80).
设y与x之间的函数关系式为y=kx+b,由题意,得
80=3k+b
240=7k+b

解得:
k=40
b=-40

∴y=40x-40.
∴y与x之间的函数关系式为y=40x-40;
(3)由题意,得
D(3,240),E(6,0).
设直线DE的解析式为y=k1x+b1,由题意,得
240=3k1+b1
0=6k1+b1

解得:
k1=-80
b1=480

∴y=-80x+480.
当y=y时,
40x-40=-80x+480,
解得:x=
13
3

答:甲、乙两车在行驶
13
3
小时时距B地的路程相等.
点评:本题考查了待定系数法一次函数的解析式的运用,一次函数与二元一次方程组的关系的运用,行程问题的数量关系的运用,解答时求出一次函数的解析式是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,D为BC的中点,CE∥AB,BE交AD、AC于E、G,求证:BF2=FG•FE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,∠ACB=90°,D是AB的中点,DE⊥AB交AC于E,BC=6cm,sin∠A=
3
5
,求线段DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直角三角形斜边长为12cm,周长为30cm,则此三角形的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数y=-
1
2
x2-2x+1的图象的顶点坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC的边长为1,D、E两点分别在边AB、AC上,CE=DE,则线段CE的最小值为(  )
A、2-
3
B、2
3
-3
C、
1
2
D、
3
-1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

若一元二次方程kx2+2x-1=0,且x1=
1
3
,x2=-1,则k的值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

轮船在两港口间航行,顺流航行要走12h,逆流航行要走15h,已知水流速度是12km/h,求轮船的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

根据已知条件求分式的值:已知x2+4y2=4xy,求
x+2y
x-y
的值.

查看答案和解析>>

同步练习册答案