精英家教网 > 初中数学 > 题目详情

【题目】某景区售票处规定:非节假日的票价打a折售票;节假日根据团队人数x()实行分段售票:若10,则按原展价购买;若x>10,则其中10人按原票价购买,超过部分的按原那价打b折购买.某旅行社带团到该景区游览,设在非节假日的购票款为y1元,在节假日的购票款为y2元,y1y2x之间的函数图象如图所示.

(1)观察图象可知:a=________,b=________;

(2)x>10时,求y2x之间的函数表达式;

(3)该旅行社在今年51目带甲团与510(非节假日)带乙国到该景区游览,两团合计50人,共付门票款3120元,已知甲团人数超过10人,求甲团人数与乙团人数

【答案】(1) 6,8;(2) y2=64x+160 (x﹥10) ;(3) 甲团有35人,乙团有15人.

【解析】分析:(1)由函数图象,用购票款数除以定价的款数,得出a的值;用第11人到20人的购票款数除以定价的款数,得出b的值;

(2)利用待定系数法求正比例函数解析式求出y2x的函数关系式即可;

(3)设A团有n人,表示出B团的人数为(50-n),然后根据(2)的函数关系式列出方程求解即可.

详解:(1)由y1图象上点(10480),得到10人的费用为480元,

a=×10=6

y2图象上点(10800)和(201440),得到20人中后10人费用为640元,

b=×10=8

故答案为68

(2)当x﹥10时,设y2=kx+b.

图象过点(10,800),(20,1440),

解得

y2=64x+160 (x﹥10) .

(3)设甲团有m人,乙团有n.

由图象,得y1=48x.

m﹥10时,

依题意,得

解得

答:甲团有35人,乙团有15.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,一拱桥的截面呈抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,拱桥与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m景观灯.

1)求抛物线的解析式;

2)求两盏景观灯之间的水平距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据阅读材料,解决问题.

数n是一个三位数,各数位上的数字互不相同,且都不为零,从它各数位上的数字中任选两个构成一个两位数,这样就可以得到六个不同的两位数,我们把这六个不同的两位数叫做数n的“生成数”.数n的所有“生成数”之和与22的商记为G(n),例如n=123,它的六个“生成数”是12,13,21,23,31,32,这六个“生成数”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.

(1)计算:G(125),G(746);

(2)数s,t是两个三位数,它们都有“生成数”,a,1,4分别是s的百位、十位、个位上的数字,x,y,6分别是t的百位、十位、个位上的数字,规定:k=,若G(s)G(t)=84,求k的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条笔直的高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离y1、y2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的横坐标表示两车第二次相遇的时间;⑤点E的坐标为(7,180)其中正确的有________(把所有正确结论的序号都填在横线上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一次夏令营活动中,小明从营地A出发,沿北偏东60°方向走了m 到达点B,然后再沿北偏西30°方向走了50m到达目的地C

1)求AC两点之间的距离;

2)确定目的地C在营地A的北偏东多少度方向。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解全校学生下学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:

活动次数x

频数

频率

0<x3

10

0.20

3<x6

a

0.24

6<x9

16

0.32

9<x12

m

b

12<x15

4

0.08

15<x18

2

n

根据以上图表信息,解答下列问题:

1)表中a=___b=___

2)请把频数分布直方图补充完整(画图后请标注相应的数据);

3)若该校共有1500名学生,请估计该校在下学期参加社区活动超过6次的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,对角线AC、BD相交于点O,EOC上动点(与点O不重合),作AFBE,垂足为G,交BCF,交B0H,连接OG,CC.

(1)求证:AH=BE;

(2)试探究:∠AGO的度数是否为定值?请说明理由;

(3)OGCG,BG=,求OGC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为扩大内需,国务院决定在全国实施家电下乡政策. 第一批列入家电下乡的产品为彩电、冰箱、洗衣机和手机四种产品. 某县一家家电商场,去年第一季度对以上四种产品的销售情况进行了统计,绘制了如下的统计图,请你根据图中信息解答下列问题:

1)该商场第一季度一共销售了_________台家电;

2)请补全条形统计图,并求出扇形统计图中彩电所在的扇形圆心角的度数.

查看答案和解析>>

同步练习册答案