精英家教网 > 初中数学 > 题目详情

【题目】如图1为放置在水平桌面上的某创意可折叠台灯的平面示意图,将其抽象成图2,量的∠DCB=60°,∠CDE=150°,灯杆CD的长为40cm,灯管DE的长为26cm,底座AB的厚度为2cm,不考虑其他因素,分别求出DE与水平卓,面(AB所在的直线)所成的夹角度数和台灯的高(点E到桌面的距离).(结果保留根号)

【答案】解:如图,过点D作AB的平行线DM,
∵∠DCB=60°,
∴∠CDM=180°﹣∠DCB=120°,
∵∠CDE=150°,
∴∠EDM=∠CDE﹣∠CDM=150°﹣120°=30°,
即DE与水平桌面(AB所在的直线)所成的夹角度数为30°;
作EF⊥DM于点F,DG⊥AB于点G.
∵在直角△DEF中,∠EFD=90°,∠EDF=30°,DE=26cm,
∴EF= DE=13cm,
∵在直角△CDG中,∠DGC=90°,∠DCG=60°,CD=40cm,
∴sin60°=
∴DG=CDsin60°=40× =20 cm,
∵底座AB的厚度为2cm,
∴点E到桌面的距离是:13+20 +2=(15+20 )cm.
答:台灯的高(点E到桌面的距离)为(15+20 )cm
【解析】首先过点D作AB的平行线DM,根据平行线的性质求出∠CDM=120°,得出∠EDM的度数,即为DE与水平桌面(AB所在的直线)所成的夹角度数;再 作EF⊥DM于点F,DG⊥AB于点G,然后解直角三角形求出EF、DG的长,进而得出台灯的高.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= 相交于点A(m,3),B(﹣6,n),与x轴交于点C.
(1)求直线y=kx+b(k≠0)的解析式;
(2)若点P在x轴上,且SACP= SBOC , 求点P的坐标(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从2开始,连续的偶数相加,它们和的情况如表:

加数的个数n

S

1

2=1×2

2

2+4=6=2×3

3

2+4+6=15=3×4

4

2+4+6+8=20=4×5

5

2+4+6+8+10=30=5×6


(1)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=
(2)如下数表是由从1开始的连续自然数组成,观察规律:

①第n行的第一个数可用含n的式子表示为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在四边形ABCD中,DCABBD平分ABCCD=4.

(1)求BC的长;

(2)如图2,若ABC=60°,过点DDEAB,过点CCFBD,垂足分别为EF,连接EF.请判断DEF的形状并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一张对边互相平行的纸条,折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( )

(1)∠C′EF=32°;(2)∠AEC=148°;(3)∠BGE=64°;(4)∠BFD=116°.

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径AD长为6,AB是弦,∠A=30°,CD∥AB,且CD=
(1)求∠C的度数;
(2)求证:BC是⊙O的切线;
(3)求阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC 中,AB=AC,C=70°,AB′C′ABC 关于直线 EF对称,∠CAF=10°,连接 BB′,则∠ABB′的度数是(

A. 30° B. 35° C. 40° D. 45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索与发现:

(1)若直线a1a2a2a3,则直线a1a3的位置关系是__________,请说明理由.

(2)若直线a1a2a2a3a3a4,则直线a1a4的位置关系是________(直接填结论,不需要证明)

(3)现在有2 011条直线a1a2a3a2 011,且有a1a2a2a3a3a4a4a5,请你探索直线a1a2 011的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.

分组

频数

百分比

600800

2

5

8001000

6

15

10001200

45

9

22.5

16001800

2

合计

40

100

根据以上提供的信息,解答下列问题:

1)补全频数分布表.

2)补全频数分布直方图.

3)绘制相应的频数分布折线图.

4)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?

查看答案和解析>>

同步练习册答案