精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,∠ACB90°ACBC,将ABC沿EF折叠,使点A落在直角边BC上的D点处,设EFABAC边分别交于点EF,如果折叠后CDFBDE均为等腰三角形,那么∠B_____

【答案】30°

【解析】

先确定△CDF是等腰三角形,得出∠CFD=CDF=45°,因为不确定△BDE是以那两条边为腰的等腰三角形,故需讨论,①DE=DB,②BD=BE,③DE=BE,然后分别利用角的关系得出答案即可.

解:∵△CDF中,∠C90°,且△CDF是等腰三角形,

CFCD

∴∠CFD=∠CDF45°

设∠DAEx°,由对称性可知,AFFDAEDE

∴∠FDACFD22.5°,∠DEB2x°

分类如下:

①当DEDB时,如图1所示:

B=∠DEB2x°

由∠CDE=∠DEB+B,得45°+22.5°+x4x

解得:x22.5°

此时∠B2x45°

ACBC

∴∠B45°不成立;

②当BDBE时,如图2所示:

则∠B=(180°4x°,∠CAD22.5°

由∠CDE=∠DEB+B得:45°+22.5°+x2x+180°4x

解得x37.5°

此时∠B=(1804x°30°

DEBE时,则∠B1802x°

由∠CDE=∠DEB+B得,45°+22.5°+x2x+1802x°

此方程无解.

DEBE不成立.

综上所述,∠B30°

故答案为:30°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,,连结AC,过点C作直线lAB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.

(1)求∠BAC的度数;

(2)当点DAB上方,且CDBP时,求证:PC=AC;

(3)在点P的运动过程中

①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;

②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的角平分线,DFAB,垂足为F,DE=DG,ADG和△AED的面积分别为5038,则△EDF的面积为(

A. 6B. 12C. 4D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 已知ABC中, BAC=90°, AB=AC, AE是过A的一条直线, 且B、C在AE的异侧, BDAE于D, CEAE于E.

(1)求证: BD=DE+CE.

(2)若直线AE绕A点旋转到图位置时(BD<CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请给予证明;

(3)若直线AE绕A点旋转到图位置时(BD>CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请直接写出结果, 不需证明.

(4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线与x轴,y轴分别交于B,C两点,抛物线过点B,C.

(1)求b、c的值;

(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E.当线段DE的长度最大时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2的菱形ABCD中,∠A=60°,M是边AD的中点,NAB上一动点(不与A、B重合),将AMN沿MN所在直线翻折得到A1MN,连接A1C,画出点NAB的过程中A1的运动轨迹,A1C的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校计划一次性购买排球和篮球,每个篮球的价格比排球贵30元;购买2个排球和3个篮球共需340元.

(1)求每个排球和篮球的价格:

(2)若该校一次性购买排球和篮球共60个,总费用不超过3800元,且购买排球的个数少于39个.设排球的个数为m,总费用为y元.

①求y关于m的函数关系式,并求m可取的所有值;

②在学校按怎样的方案购买时,费用最低?最低费用为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AC平分∠BADCEABE 点,∠ADC+B=180°求证:

1BC=CD

22AE=AB+AD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.

(1)求证:∠BDA=∠ECA.

(2)若m=,n=3,∠ABC=75°,求BD的长.

(3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)

(4)试探究线段BF,AE,EF三者之间的数量关系。

查看答案和解析>>

同步练习册答案