精英家教网 > 初中数学 > 题目详情
9.已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,DF交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.
(1)如图1,当点P与点G分别在线段BC与线段AD上时,若PC=1,计算出DG的长;
(2)如图1,当点P与点G分别在线段BC与线段AD上时,证明:四边形DFEP为菱形;
(3)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,(2)的结论:四边形DFEP为菱形是否依然成立?若成立,请给出证明;若不成立,请说明理由.

分析 (1)作PM⊥DG于M,根据等腰三角形的性质由PD=PG得MG=MD,根据矩形的判定易得四边形PCDM为矩形,则PC=MD,于是有DG=2PC;
(2)根据四边形ABCD为正方形得AD=AB,由四边形ABPM为矩形得AB=PM,则AD=PM,再利用等角的余角相等得到∠GDH=∠MPG,于是可根据“ASA”证明△ADF≌△MPG,得到DF=PG,加上PD=PG,得到DF=PD,然后利用旋转的性质得∠EPG=90°,PE=PG,所以PE=PD=DF,再利用DF⊥PG得到DF∥PE,于是可判断四边形PEFD为平行四边形,加上DF=PD,则可判断四边形PEFD为菱形;
(3)与(1)中②的证明方法一样可得到四边形PEFD为菱形.

解答 (1)证明:作PM⊥DG于M,如图1,
∵PD=PG,
∴MG=MD,
∵四边形ABCD为矩形,
∴PCDM为矩形,
∴PC=MD,
∴DG=2PC=2;
(2)∵四边形ABCD为正方形,
∴AD=AB,
∵四边形ABPM为矩形,
∴AB=PM,
∴AD=PM,
∵DF⊥PG,
∴∠DHG=90°,
∴∠GDH+∠DGH=90°,
∵∠MGP+∠MPG=90°,
∴∠GDH=∠MPG,
在△ADF和△MPG中,
$\left\{\begin{array}{l}{∠A=∠GMP}\\{AD=PM}\\{∠ADF=∠MPG}\end{array}\right.$,
∴△ADF≌△MPG(ASA),
∴DF=PG,
而PD=PG,
∴DF=PD,
∵线段PG绕点P逆时针旋转90°得到线段PE,
∴∠EPG=90°,PE=PG,
∴PE=PD=DF,
而DF⊥PG,
∴DF∥PE,
即DF∥PE,且DF=PE,
∴四边形PEFD为平行四边形,
∵DF=PD,
∴四边形PEFD为菱形;
(3)解:四边形PEFD是菱形.理由如下:
作PM⊥DG于M,如图2,
与(1)一样同理可证得△ADF≌△MPG,
∴DF=PG,
而PD=PG,
∴DF=PD,
∵线段PG绕点P逆时针旋转90°得到线段PE,
∴∠EPG=90°,PE=PG,
∴PE=PD=DF
而DF⊥PG,
∴DF∥PE,
即DF∥PE,且DF=PE,
∴四边形PEFD为平行四边形,
∵DF=PD,
∴四边形PEFD为菱形.

点评 本题考查了四边形的综合题:熟练掌握平行四边形、矩形、菱形和正方形的判定与性质是解题的关键;同时会运用等腰三角形的性质和旋转的性质;会利用三角形全等解决线段相等的问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.计算:2x3•(-3x)2=18x5
计算:(x+7)(x-3)=x2+4x-21.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.将抛物线y=4x2先沿x轴方向向左平移2个单位,再沿y轴方向向下平移3个单位,所得抛物线的解析式是(  )
A.y=4(x+2)2-3B.y=4(x-2)2-3C.y=4(x+2)2+3D.y=4(x+3)2+2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.方程x$\sqrt{2-x}$=$\sqrt{2-x}$的解是(  )
A.x1=2,x1=1,x3=-1B.x1=2,x2=1C.x1=2,x2=-1D.x1=1,x2=-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,AD为△ABC的中线,已知AD=4cm,试确定AB+AC的取值范围.
解:延长AD到E,使DE=AD,连接BE.
因为AD为△ABC的中线,
所以BD=CD.
在△ACD和△EBD中,因为AD=DE,∠ADC=∠EDB,CD=BD,所以△ACD≌△EBD(SAS)
所以BE=CA(两三角形全等,对应边相等,)
因为AB+BE>AE(两边之和大于第三边,)
所以AB+AC>AE.
因为AE=2AD=8cm,
所以AB+AC>8cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知⊙O1与⊙O2的半径分别为3cm和4cm,两元的圆心距为7cm,则两圆的位置关系为(  )
A.外离B.外切C.相交D.内含

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.等边三角形△ABC绕着它的中心,至少旋转120度才能与它本身重合.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:
(1)(2x+1)2-(2x+5)(2x-5);
(2)1-$\frac{a-b}{a+2b}$÷$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+4ab+4{b}^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,正方形ABCD中,E为BC上的一点,DF=CF,DC+CE=AE,求证:AF平分∠DAE.

查看答案和解析>>

同步练习册答案