精英家教网 > 初中数学 > 题目详情

【题目】已知正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,当∠MAN绕点A旋转到BM=DN(如图1),则

(1)线段BMDNMN之间的数量关系是______;

(2)当∠MAN绕点A旋转到BM≠DN(如图2),线段BMDNMN之间有怎样的数量关系?写出猜想,并加以证明;

(3)当∠MAN绕点A旋转到(如图3)的位置时,线段BMDNMN之间又有怎样的数量关系?请直接写出你的猜想.

【答案】(1)BM+DN=MN;(2)BM+DN=MN,证明详见解析;(3)DN-BM=MN,证明详见解析.

【解析】

1)连接ACMN于点G则可知AC垂直平分MN结合∠MAN=45°,可证明△ABM≌△AGM可得到BM=MG同理可得到NG=DN可得出结论

2)在MB的延长线上截取BE=DN连接AE则可证明△ABE≌△ADN可得到AE=AN进一步可证明△AEM≌△ANM可得结论BM+DN=MN

3)在DC上截取DF=BM连接AF可先证明△ABM≌△ADF进一步可证明△MAN≌△FAN可得到MN=NF从而可得到DNBM=MN

1)如图1连接ACMN于点G

∵四边形ABCD为正方形BC=CDBM=DNCM=CNAC平分∠BCDACMNMG=GN,∴AM=AN

AGMN∴∠MAG=NAG

∵∠BAC=MAN=45°,即∠BAM+∠GAM=GAM+∠GAN∴∠BAM=GAN=GAM

ABM和△AGM中,∵∴△ABM≌△AGMAAS),BM=MG同理可得GN=DNBM+DN=MG+GN=MN

故答案为:BM+DN=MN

2)猜想BM+DN=MN证明如下

如图2MB的延长线上截取BE=DN连接AE

在△ABE和△ADN中,∵∴△ABE≌△ADNSAS),AE=ANEAB=NAD

∵∠BAD=90°,MAN=45°,∴∠BAM+∠DAN=45°,∴∠EAB+∠BAM=45°,∴∠EAM=NAM

AEM和△ANM中,∵∴△AEM≌△ANMSAS),ME=MNME=BE+BM=BM+DNBM+DN=MN

3DNBM=MN.证明如下

如图3DC上截取DF=BM连接AF

ABM和△ADF中,∵∴△ABM≌△ADFSAS),AM=AFBAM=DAF∴∠BAM+∠BAF=BAF+∠DAF=90°,MAF=BAD=90°.

∵∠MAN=45°,∴∠MAN=FAN=45°.

MAN和△FAN中,∵∴△MAN≌△FANSAS),MN=NFMN=DNDF=DNBMDNBM=MN

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的内角∠DCB与外角∠ABE的平分线相交于点F.

1)若BFCD,∠ABC=80°,求∠DCB的度数;

2)已知四边形ABCD中,∠A=105,∠D=125,求∠F的度数;

3)猜想∠F、∠A、∠D之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明袋子中有个红球,个绿球和个白球,这些球除颜色外无其他差别.

从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于,求的值;

在一个摸球游戏中,若有个白球,小明用画树状图的方法寻求他两次摸球(摸出一球后,不放回,再摸出一球)的所有可能结果,如图是小明所画的正确树状图的一部分,补全小明所画的树状图,并求两次摸出的球颜色不同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣30).下列说法:①abc0②2a﹣b=0③4a+2b+c0若(﹣5y1),(y2)是抛物线上两点,则

y1y2.其中说法正确的是( )

A. ①② B. ②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的中线,EF分别是ADAD延长线上的点,且DEDF,连接BFCE,下列说法:①△ABD 和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的是(

A. ①② B. ③⑤ C. ①③④ D. ①④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中正确的结论有(  )

A. ①③ B. ②③ C. ①④ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列条件中不能判断为直角三角形的是(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知在直角梯形OABC中,ABOC,BCx轴于点C、A(1,1)、B(3,1).动点PO点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),OPQ与直角梯形OABC重叠部分的面积为S.

(1)求经过O、A、B三点的抛物线解析式;

(2)求St的函数关系式;

(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点OQ在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣2x﹣1.

x

﹣1

0

1

2

3

y

   

   

   

   

   

(1)请在表内的空格中填入适当的数;

(2)根据列表,请在所给的平面直角坐标系中画出y=x2﹣2x﹣1的图象;

(3)当x在什么范围内时,yx增大而减小;

查看答案和解析>>

同步练习册答案