【题目】如图①,直线L:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°,得到△COD,过点A,B,D的抛物线P叫做L的关联抛物线,而L叫做P的关联直线.
(1)若L:y=-x+2,则P表示的函数解析式为______;若P:,则表示的函数解析式为_______.
(2)如图②,若L:y=-3x+3,P的对称轴与CD相交于点E,点F在L上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;
(3)如图③,若L:y=mx+1,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,求出L,P表示的函数解析式.
【答案】(1);y=﹣2x+4;(2)Q坐标为Q1(﹣1,)、Q2(﹣1,);(3)y=﹣3x+1;y=﹣3x2﹣2x+1.
【解析】
(1)若l:y=-x+2,求出点A、B、D的坐标,利用待定系数法求出P表示的函数解析式;若P:,求出点D、A、B的坐标,再利用待定系数法求出l表示的函数解析式;
(2)根据对称轴的定义解答即可;
(3)以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,则有FQ∥CE,且FQ=CE.以此为基础,列方程求出点Q的坐标.注意:点Q的坐标有两个,如答图所示,不要漏解;
(4)如答图所示,作辅助线,构造等腰直角三角形OGH,求出OG的长度,进而由AB=2OG求出AB的长度,再利用勾股定理求出y=mx+1中m的值,最后分别求出l,P表示的函数解析式.
解:(1);y=﹣2x+4.
(2)若:y=﹣3x+3,则A(1,0)、B(0,3),
∴C(0,1)、D(﹣3,0).求得直线CD的解析式为:y=x+1.可求得的对称轴为x=﹣1.
∵以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形,
∴FQ∥CE,且FQ=CE.
设直线FQ的解析式为:y=x+b.∵点E、点C的横坐标相差1,
∴点F、点Q的横坐标也是相差1.则|xF﹣(﹣1)|=|xF+1|=1,解得xF=0或xF=﹣2.
∵点F在直线:y=﹣2x+4上,
∴点F坐标为(0,3)或(﹣2,9).
若F(0,3),则直线FQ为:y=x+3,
当x=﹣1时,y=,∴Q1(﹣1,).
若F(﹣2,9),则直线FQ为:,
当x=﹣1时,y= ,∴Q2(﹣1,).
∴满足条件的点Q有2个,如答图1所示,点Q坐标为Q1(﹣1,)、Q2(﹣1,).
(3)如图2所示,连接OG、OH.∵点G、H为斜边中点,
∴OG=AB,OH=CD.
由旋转性质可知,AB=CD,OG⊥OH,
∴△OGH为等腰直角三角形.
∵点G为GH中点,
∴△OMG为等腰直角三角形.
∴OG=OM==.
∴AB=2OG=.
∵:y=mx+1,
∴A(,0),B(0,1).
在Rt△AOB中,由勾股定理得:OA2+OB2=AB2,即:()2+12=()2,
解得:m=﹣3或m=3.
∵点B在y轴正半轴,
∴m=3舍去,
∴m=﹣3.
∴表示的函数解析式为:y=﹣3x+1;
∴B(0,1),D(﹣1,0).又A(,0),
利用待定系数法求得:y=﹣3x2﹣2x+1.
科目:初中数学 来源: 题型:
【题目】如图,Q是弧AB与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交弧AB于点C,连接BC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.
小明根据学习函数的经验,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)确定自变量x的取值范围是 .
(2)按下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值.
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 5.62 | 4.67 | 3.76 | 2.65 | 3.18 | 4.37 | |
y2/cm | 5.62 | 5.59 | 5.53 | 5.42 | 5.19 | 4.73 | 4.11 |
(3)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并面出函数y1,y2的图象.
(4)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图矩形纸片ABCD中,,,P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别是E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m-2(m0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是( )
A. <m≤1B. ≤m<1C. 1<m≤2D. 1<m<2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.
(1)搅匀后从中摸出1个盒子,求摸出的盒子中是型矩形纸片的概率;
(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,已知点的坐标为.
(1)请用直尺(不带刻度)和圆规作一条直线,它与轴和轴的正半轴分别交于点和点,且与关于直线对称.(作图不必写作法,但要保留作图痕迹.)
(2)请求出(1)中作出的直线的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 随着新学校建成越来越多,绝大部分孩子已能就近入学,某数学学习兴趣小组对八年级(1)班学生上学的交通方式进行问卷调查,并将调查结果画出下列两个不完整的统计图(图1、图2).请根据图中的信息完成下列问题.
(1)该班参与本次问卷调查的学生共有多少人;
(2)请补全图1中的条形统计图;
(3)在图2的扇形统计图中,“骑车”所在扇形的圆心角的度数是多少度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l经过A(6,0)和B(0,12)两点,且与直线y=x交于点C,点P(m,0)在x轴上运动.
(1)求直线l的解析式;
(2)过点P作l的平行线交直线y=x于点D,当m=3时,求△PCD的面积;
(3)是否存在点P,使得△PCA成为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com