精英家教网 > 初中数学 > 题目详情

【题目】已知球O的半径为1,A,B是球面上的两点,且AB= ,若点P是球面上任意一点,则 的取值范围是(
A.[ ]
B.[ ]
C.[0, ]
D.[0, ]

【答案】B
【解析】解:∵OA=OB=1,AB= , ∴cos∠AOB= =﹣ ,即∠AOB=120°,
以球心O为原点,以平面AOB的垂线为竖轴建立空间坐标系,
设A(1,0,0),B(﹣ ,0),P(x,y,z)
=(1﹣x,﹣y,﹣z), =(﹣ ﹣x, ﹣y,﹣z),且x2+y2+z2=1,
=(1﹣x)(﹣ ﹣x)﹣y( ﹣y)+z2=x2+y2+z2 (x+ y)﹣ = (x+ y).
∵P(x,y,z)是球上的一点,∴x2+y2≤1,
设m=x+ ,则当直线x+ y﹣m=0与圆x2+y2=1相切时,m取得最值,
=1,∴﹣2≤m≤2,
∴当m=﹣2时, 取得最大值 ,当m=2时, 取得最小值﹣
故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当 = 时,四边形ADFE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为(  )

A.3
B.1.5
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B,将△AOB绕点B逆时针旋转,使点O的对应点D落在x轴的正半轴上.若AB的对应线段CB恰好经过点O.

(1)求点B的坐标和双曲线的解析式;
(2)判断点C是否在双曲线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)= x2+ax2+bx﹣ (a>0,b∈R),f(x)在x=x1和x=x2处取得极值,且|x1﹣x2|= ,曲线y=f(x)在(1,f(1))处的切线与直线x+y=0垂直. (Ⅰ)求f(x)的解析式;
(Ⅱ)证明关于x的方程(k2+1)ex﹣1﹣kf′(x)=0至多只有两个实数根(其中f′(x)是f(x)的导函数,e是自然对数的底数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】5支篮球队进行单循环比赛(任两支球队恰进行一场比赛),任两支球队之间胜率都是 .单循环比赛结束,以获胜的场次数作为该队的成绩,成绩按从大到小排名次顺序,成绩相同则名次相同.有下列四个命题:p1:恰有四支球队并列第一名为不可能事件;p2:有可能出现恰有两支球队并列第一名;p3:每支球队都既有胜又有败的概率为 ;p4:五支球队成绩并列第一名的概率为 .其中真命题是(
A.p1 , p2 , p3
B.p1 , p2 , p4
C.p1 , p3 , p4
D.p2 , p3 , p4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为丰富人民群众业余生活,某市拟建设一座江滨公园,通过专家评审筛选出建设方案A和B向社会公开征集意见.有关部门用简单随机抽样方法调查了500名市民对这两种方案的看法,结果用条形图表示如下:
(Ⅰ)根据已知条件完成下面的2×2列联表,并用独立性检验的方法分析,能否在犯错误的概率不超过0.01的前提下认为是否选择方案A和年龄段有关?

选择方案A

选择方案B

总计

老年人

非老年人

总计

500

附:
(Ⅱ)根据(Ⅰ)的结论,能否提出一个更好的调查方法,使得调查结果更具代表性,说明理由.

P(K2≥k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D,E分别是边AB,AC的中点,设 = =
(1)求向量 (用向量 的式子表示).
(2)在图中作出向量 在向量 方向上的分向量(不要求写作法,但要指出所作图中表示结论的向量).

查看答案和解析>>

同步练习册答案