【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.
(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;
(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线交x轴于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A、B、C的坐标;
(2)若点M为抛物线的顶点,连接BC、CM、BM,求△BCM的面积;
(3)连接AC,在x轴上是否存在点P使△ACP为等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形中,对角线相交于点,点为线段上一点,连接,将绕点顺时针旋转得到,连接交于点.
(1)若,求的面积;
(2)如图2,线段的延长线交于点,过点作于点,求证:;
(3)如图3,点为射线上一点,线段的延长线交直线于点,交直线于点,过点作垂直直线于点,请直接写出线段的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,AB为的直径,C为上一点,P是的中点,过点P作AC的垂线,交AC的延长线于点D.
(1)求证:DP是的切线;
(2)若AC=5,,求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.
(1)求证:AE=BF;
(2)连接EF,求证:∠FEB=∠GDA;
(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC和△ADE按如图所示方式放置,点D在△ABC内,连接BD、CD和CE,且∠DCE=90°.
(1)如图①,当△ABC和△ADE均为等边三角形时,试确定AD、BD、CD三条线段的关系,并说明理由;
(2)如图②,当BA=BC=2AC,DA=DE=2AE时,试确定AD、BD、CD三条线段的关系,并说明理由;
(3)如图③,当AB:BC:AC=AD:DE:AE=m:n:p时,请直接写出AD、BD、CD三条线段的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一个矩形纸片,将该纸片放置在平面直角坐标系中,点,点,点P为边上的动点.
(1)如图①,经过点O、P折叠该纸片,得点和折痕.当点P的坐标为时,求的度数;
(2)如图②,当点P与点C重合时,经过点O、P折叠纸片,使点B落在点的位置,与交于点M,求点M的坐标;
(3)过点P作直线,交于点Q,再取中点T,中点N,分别以,,,为折痕,依次折叠该纸片,折叠后点O的对应点与点B的对应点恰好重合,且落在线段上,A、C的对应点也恰好重合,也落在线段上,求此时点P的坐标(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.
(1)如图2﹣1.若AB=CD=110cm,∠AOC=120°,求h的值;
(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∠AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到lcm).
(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com