精英家教网 > 初中数学 > 题目详情

【题目】如图ABC中,分别延长边ABBCCA,使得BDABCE2BCAF3CA,若ABC的面积为1,则DEF的面积为( )

A. 12B. 14C. 16D. 18

【答案】D

【解析】

连接AECD,要求三角形DEF的面积,可以分成三部分(△FCD+FCE+DCE)来分别计算,三角形ABC是一个重要的条件,抓住图形中与它同高的三角形进行分析计算,即可解得△DEF的面积.

解:连接AECD

BD=AB
SABC=SBCD=1SACD=1+1=2
AF=3AC
FC=4AC
SFCD=4SACD=4×2=8
同理可以求得:SACE=2SABC=2,则SFCE=4SACE=4×2=8
SDCE=2SBCD=2×1=2
SDEF=SFCD+SFCE+SDCE=8+8+2=18

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A、C,PC交AB的延长线于点D.DE⊥PO交PO的延长线于点E.

(1)求证:∠EPD=∠EDO;

(2)若PC=6,tan∠PDA=,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(40)B(02),点P(aa)

1)当a2时,将AOB绕点P(aa)逆时针旋转90°DEF,点A的对应点为D,点O的对应点为E,点B的对应点为点F,在平面直角坐标系中画出DEF并写出点D的坐标

2)作线段AB关于P点的中心对称图形(点AB的对应点分别是GH),若四边形ABGH是正方形,则a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EF分别是ADBC上的两点,EF将四边形ABCD分成两个边长为5cm的正方形,∠DEF=∠EFB=∠B=∠D=90°;点HCD上一点且CH=lcm,点P从点H出发,沿HDlcm/s的速度运动,同时点Q从点A出发,沿ABC5cm/s的速度运动.任意一点先到达终点即停止运动;连结EPEQ.

(1)如图1,点QAB上运动,连结QF,当t= 时,QF//EP;

(2)如图2,若QEEP,求出t的值;

(3)试探究:当t为何值时,的面积等于面积的.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,长方形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标为(100),点B的坐标为(108).

1)直接写出点C的坐标为:C );

2)已知直线AC与双曲线y=m0)在第一象限内有一点交点Q为(5n);

mn的值;

若动点PA点出发,沿折线AOOC的路径以每秒2个单位长度的速度运动,到达C处停止.求△OPQ的面积S与点P的运动时间t(秒)的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程

(1)求证:不论k取什么实数值,这个方程总有实数根;

(2)若等腰三角形ABC的一边长为,另两边的长bc恰好是这个方程的两个根,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形组成的网格中,ABC的三个顶点均在格点上,

请按要求完成下列各题:

(1)用2B铅笔画ADBC(D为格点),连接CD;

(2)线段CD的长为   

(3)请你在ACD的三个内角中任选一个锐角,若你所选的锐角是   ,则它所对应的正弦函数值是   

(4)若EBC中点,则tanCAE的值是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形OABC摆放在平面直角坐标系中,点Ax轴上,点Cy轴上,OA3OC2,过点A的直线交矩形OABC的边BC于点P,且点P不与点BC重合,过点P作∠CPD=∠APBPDx轴于点D,交y轴于点E

(1)若△APD为等腰直角三角形.

求直线AP的函数解析式;

x轴上另有一点G的坐标为(20),请在直线APy轴上分别找一点MN,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值.

(2)如图2,过点EEFAPx轴于点F,若以APEF为顶点的四边形是平行四边形,求直线PE的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABBC于点B,CDBC于点C,AB=4,CD=6,BC=14,PBC边上一点,试问BP为何值时,以A,B,P为顶点的三角形与以P,C,D为顶点的三角形相似?

查看答案和解析>>

同步练习册答案