【题目】已知点A是双曲线y=-在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,点C在第一象限,且∠ACB=120°,点C的位置随着点A的运动在不断变化,但始终在双曲k线y=上,则k的值为_______.
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线与轴、轴分别交于、两点,抛物线经过、两点,与轴的另一个交点为.
(1)求抛物线的解析式及点坐标;
(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;
(3)如图2,若点是半径为2的⊙上一动点,连接、,当点运动到某一位置时,的值最小为_________.(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的进水量与出水量分别是( )
A.5L,3.75LB.2.5L,5LC.5L,2.5LD.3.75L,5L
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)探究发现:下面是一道例题及解答过程,请补充完整:
如图①在等边△ABC内部,有一点P,若∠APB=150°,求证:AP2+BP2=CP2
证明:将△APC绕A点逆时针旋转60°,得到△AP’B,连接PP’,则△APP’为等边三角形
∴∠APP’=60° ,PA=PP’ ,PC=
∵∠APB=150°,∴∠BPP’=90°
∴P’P2+BP2= ,即PA2+PB2=PC2
(2)类比延伸:如图②在等腰△ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PA,PB,PC之间的数量关系,并证明.
(3)联想拓展:如图③在△ABC中,∠BAC=120°,AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA)2+PB2=PC2(其中k>0),请直接写出k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某班甲、乙两名同学最近四次数学模拟考试成绩(满分150分)的条形统计图,则下列判断正确的是( )
A.两名同学成绩的平均数相同
B.甲同学成绩的平均数比乙同学大
C.甲同学成绩的中位数比乙同学大
D.甲同学成绩的中位数比乙同学小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(-2,0)和点B,与y轴交于C,对称轴为直线x= .
(1)求a、b满足的关系式;
(2)若点D为抛物线的顶点,连接CD,DB,BC,S△BCD= .
①求抛物线的解析式;
②点M是第一象限内对称轴右侧抛物线上一点,过点M作MN⊥x轴,垂足为点N,线段MN上有一点H,若∠HBA+∠MAB=90°,求证:HN的长为定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从A、B两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.
(1)求甲、乙两车行驶的速度V甲、V乙.
(2)求m的值.
(3)若甲车没有故障停车,求可以提前多长时间两车相遇.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c过点A(3, 0)、点B(0, 3).点M(m, 0)在线段OA上(与点A、O不重合),过点M作x轴的垂线与线段AB交于点P,与抛物线交于点Q,联结BQ.
(1)求抛物线表达式;
(2)联结OP,当∠BOP=∠PBQ时,求PQ的长度;
(3)当△PBQ为等腰三角形时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.
(1)判断直线AC与圆O的位置关系,并证明你的结论;
(2)若AC=8,cos∠BED=,求AD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com