【题目】(1)计算:
(2)如图,在矩形 ABCD 中,AE 平分∠BAD,交 BC 于点 E,过点 E 作 EF⊥AD 于点 F,求证:四边形ABEF 是正方形.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A'的坐标是(-2,2),现将△ABC平移,使点A变换为点A',点B'、C'分别是B、C的对应点.
(1)直接写出点B'、C'的坐标:B' ,C' ;并在坐标系中画出平移后的△A'B'C'(不写画法);
(2)若△ABC内部一点P的坐标为(a,b),则点P的对应点P的坐标是 ;
(3)若△ABC绕点C逆时针旋转90°至△A1B1C,画出△A1B1C.
(4)求△A'B'C'的面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个抛物线型蔬菜大棚,将其横截面放在如图所示的平面直角坐标系中,抛物线可近似用函数来表示.已知大棚在地面上的宽度OA为8米,距离O点2米处的棚高BC为米.
(1)求该抛物线的函数解析式;
(2)若借助横梁DE建一个门,且要求门的高度不低于1.5米,则横梁DE的宽度最多是多少米?(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,直线与轴、轴分别交于、两点,两动点、分别以个单位长度/秒和个单位长度/秒的速度从、两点同时出发向点运动(运动到点停止);过点作交抛物线于、两点,交于点,连结、.若抛物线的顶点恰好在上且四边形是菱形,则、的值分别为( )
A. 、 B. 、 C. 、 D. 、
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简,再求值:(1)(2x+y)2+(x-y)(x+y)-5x(x-y),其中x=+1,y=-1.
(2)[(x+2y)2-(x+y)(3x-5y)-5y2]÷2x,其中x=-2,y=.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.
(1)求该抛物线的解析式;
(2)若点C(m,–)在抛物线上,求m的值.
(3)根据图象直接写出一次函数值大于二次函数值时x 的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4,则等边△AEF的边长为______.
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1:y=2x﹣2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).
(1)求m的值;
(2)求直线l2的解析式;
(3)根据图象,直接写出1<kx+b<2x﹣2的解集.
(4)求△ACD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图①,BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,BQ、CQ分别是∠PBC、∠PCB的角平分线,BM、CN分别是∠PBD、∠PCE的角平分线,∠BAC=α.
(1)当α=40°时,∠BPC= °,∠BQC= °;
(2)当α= °时,BM∥CN;
(3)如图②,当α=120°时,BM、CN所在直线交于点O,求∠BOC的度数;
(4)在α>60°的条件下,直接写出∠BPC、∠BQC、∠BOC三角之间的数量关系: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com