【题目】如图,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动,当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒.
(1)当t为多少秒时,四边形PQCD是平行四边形?请说明理由;
(2)当t为多少秒时,AQ=DC?请说明理由;
(3)当t为多少秒时,PQ⊥DC?请说明理由.
【答案】(1)t=时,四边形PQCD是平行四边形,理由见解析;(2)当t=或t=4时,AQ=DC,理由见解析;(3)当t=秒,使得PQ⊥DC,理由见解析
【解析】
(1)若四边形PQCD是平行四边形,则PD=CQ,根据题意可列出关于t的一元一次方程,求解即可;
(2)过点D作DE⊥BC于点E,则DE=AB=6,利用勾股定理可求出CE的长,从而得出BC=12,BQ=12-5t,在直角△ABQ中利用勾股定理求解即可
(3)利用△CPQ∽△CED求解即可.
解:(1)t=时,四边形PQCD是平行四边形,理由如下:
由题意知,AP=4t,CQ=5t,
∴DP=AD﹣AP=4﹣4t,
∵四边形PQCD成为平行四边形,
∴DP=CQ,
∴4﹣4t=5t,
解得:t=,
即t=时,四边形PQCD是平行四边形;
(2)过点D作DE⊥BC于E,连接AQ,
∵∠B=90°,AD∥BC,
∵∠B=90°,AD∥BC,
∴四边形ABED是矩形,
∴DE=AB=6cm,
BE=AD=4cm,
由勾股定理得,CE=,
∴BC=BE+CE=4+8=12cm,
∵CQ=5t,BC=12,
∴BQ=12﹣5t,
∵AQ=CD,
∴,
解得:t=或t=4(不符合题意,舍去);
(3)如下图,由题意知,CP=14﹣4t,
∵PQ⊥CD,
∴∠CPQ=90°,
∴∠CPQ=∠CED,
又∵∠C=∠C,
∴△CPQ∽△CED,
∴
即,
解得t=,
此时,CQ=×5=<BC,
∴存在t=秒,使得PQ⊥DC.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣2x2﹣4x+6.
(1)求出函数的顶点坐标、对称轴以及描述该函数的增减性.
(2)求抛物线与x轴交点和y轴交点坐标;并画出它的大致图象.
(3)当﹣2<x<4时.求函数y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=﹣x+5与反比例函数y2=的图象交于A(1,m)、B(4,n)两点.
(1)求A、B两点的坐标和反比例函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象如下所示,下列5个结论:①;②;③;④;⑤(的实数),其中正确的结论有几个?
A. ①②③ B. ②③④ C. ②③⑤ D. ③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表给出了代数式﹣x2+bx+c与x的一些对应值:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
﹣x2+bx+c | … | 5 | n | c | 2 | ﹣3 | ﹣10 | … |
(1)根据表格中的数据,确定b,c,n的值;
(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校2019年度“一中好声音“校园歌手比赛已正式拉开序幕,其中甲,乙两位同学的表现分外突出,现场A、B、C、D、E、F六位评委的打分情况以及随机抽取的50名同学的民意调查结果分别如下统计表和不完整的条形统计图:
A | B | C | D | E | F | |
甲 | 88 | m | 90 | 93 | 95 | 96 |
乙 | 89 | 92 | 90 | 97 | 94 | 93 |
(1)a= ,六位评委对乙同学所打分数的中位数是 ,并补全条形统计图;
(2)六位评委对甲同学所打分数的平均分为92分,则m= ;
(3)学校规定评分标准:去掉评委评分中最高和最低分,再算平均分,并将平均分与民意测评分按3:2计算最后得分,求甲、乙两位同学的得分,(民意测评分=“好”票数×2+“较好”票数×1+“一般”票数×0)
(4)现准备从甲、乙两位同学中选一位优秀同学代表重庆一中参加市歌手大赛,请问选哪位同学?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,点E是BC边上一动点(不与点C重合)对角线AC与BD相交于点O,连接AE,交BD于点G.
(1)根据给出的△AEC,作出它的外接圆⊙F,并标出圆心F(不写作法和证明,保留作图痕迹);
(2)在(1)的条件下,连接EF.①求证:∠AEF=∠DBC;
②记t=GF2+AGGE,当AB=6,BD=6时,求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,△ABC中,∠A=60°,AC>AB>2,点D,E分别在边AB,AC上,且BD=CE=2,连接DE,点M是DE的中点,点N是BC的中点,线段MN的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是菱形ABCD对角线的交点,点E在BO上,EF垂直平分AB,垂足为F.
(1)求证:△BEF ∽△DCO;
(2)若AB=10,AC=12,求线段EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com