精英家教网 > 初中数学 > 题目详情

【题目】如图,ABCD的对角线AC,BD相交于点O.E,FAC上的两点,并且AE=CF,连接DE,BF.

(1)求证:DOE≌△BOF;

(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.

【答案】(2)证明见解析;(2)四边形EBFD是矩形.理由见解析.

【解析】

1)根据SAS即可证明;

2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;

【解答】(1)证明:∵四边形ABCD是平行四边形,

OA=OCOB=OD

AE=CF

OE=OF

在△DEO和△BOF中,

∴△DOE≌△BOF

2)结论:四边形EBFD是矩形.

理由:∵OD=OBOE=OF

∴四边形EBFD是平行四边形,

BD=EF

∴四边形EBFD是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是(

A. 经过集中喷洒药物,室内空气中的含药量最高达到

B. 室内空气中的含药量不低于的持续时间达到了

C. 当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效

D. 当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l1的函数关系式为y=2x+b,直线l2过原点且与直线l1交于点P-1-5).

1)试问(-1-5)可以看作是怎样的二元一次方程组的解?

2)设直线l1与直线y=x交于点A,求△APO的面积;

3)在x轴上是否存在点Q,使得△AOQ是等腰三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y=的图象与一次函数y=kx+m的图象交于点(2,1).

(1)分别求出这两个函数的解析式;

(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的角平分线BPCP相交于点P,∠A=100°,则∠P=____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级甲、乙两班分别选5名同学参加“学雷锋见行动”演讲比赛,其预赛成绩如图:

1)根据上图求出下表中的abc的值(单位:分);

平均数

中位数

众数

方差

甲班

8.5

a

8.5

0.7

乙班

b

8

c

1.6

2)学校决定在甲、乙两班中选取预赛成绩较好的5人参加该活动的县级演讲比赛,求这5人预赛成绩的平均分数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=x2x﹣4x轴交于A,B两点(点A在点B左侧),与y轴交于点C.

(1)求点A,B,C的坐标;

(2)点PA点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点QB点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,PBQ的面积S最大,并求出其最大面积;

(3)在(2)的条件下,当PBQ面积最大时,在BC下方的抛物线上是否存在点M,使BMC的面积是PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年的日为世界环保日,为了提倡低碳环保,某公司决定购买台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买台甲型设备比购买台乙型设备多花万元,购买台甲型设备比购买台乙型设备少花万元.

1)求甲、乙两种型号设备每台的价格;

2)该公司经决定购买甲型设备不少于台,预算购买节省能源的新设备资金不超过万元,你认为该公司有哪几种购买方案;

3)在(2)的条件下,已知甲型设备每月的产量为吨,乙型设备每月的产量为.若每月要求产量不低于吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1EF分别是BCCD上的点,且AEF是等边三角形,则BE的长为(

A. B. C. D.

查看答案和解析>>

同步练习册答案