【题目】如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:
①当x>0时,y>0;
②若a=﹣1,则b=4;
③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;
④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6.
其中真命题的序号是( )
A. ①B. ②C. ③D. ④
【答案】C
【解析】
①根据二次函数所过象限,判断出y的符号;
②根据A、B关于对称轴对称,求出b的值;
③根据>1,得到x1<1<x2,从而得到Q点距离对称轴较远,进而判断出y1>y2;
④作D关于y轴的对称点D′,E关于x轴的对称点E′,连接D′E′,D′E′与DE的和即为四边形EDFG周长的最小值.求出D、E、D′、E′的坐标即可解答.
①当x>0时,函数图象过一四象限,当0<x<b时,y>0;当x>b时,y<0,故本选项错误;
②二次函数对称轴为x=﹣ ,当a=﹣1时有 =1,解得b=3,故本选项错误;
③∵x1+x2>2,
∴ >1,
又∵x1﹣1<0<x2﹣1,
∴Q点距离对称轴较远,
∴y1>y2,故本选项正确;
④如图,作D关于y轴的对称点D′,E关于x轴的对称点E′,
连接D′E′,D′E′与DE的和即为四边形EDFG周长的最小值.
当m=2时,二次函数为y=﹣x2+2x+3,顶点纵坐标为y=﹣1+2+3=4,D为(1,4),则D′为(﹣1,4);C点坐标为C(0,3);则E为(2,3),E′为(2,﹣3);
则DE= ;D′E′= ;
∴四边形EDFG周长的最小值为 ,故本选项错误.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图.二次函数y=ax2+bx+c(a≠0)的部分图象与x轴交于点A(﹣1,0),与y轴交于点B.且对称轴为x=1.则下面的四个结论:
①当x>﹣1时,y>0;
②一元二次方程ax2+bx+c=0的两根为x1=﹣1,x2=3;
③当y<0时,x<﹣1;
④抛物线上两点(x1,y1),(x2,y2).当x1>x2>2时,y1>y2
其中正确结论的个数是( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了丰富同学们的课外活动生活,开设了“第二课堂”.课堂设置了十几个动项目,根据(1)班学生报名参加的项目,绘制成如下的不完整的条形统计图和扇形统计图.
结合图中信息,回答下列问题
(1)这个班学生人数有 人;
(2)补全条形统计图,在扇形统计图中其它项目所对的圆心角为 ;
(3)喜欢羽毛球的有3名女同学,其余为男同学,现要从中随机抽取2名同学参加学校的羽毛球队,用列表或树状图求出所抽取的2名同学,恰好2人都是男同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为( )
A. 3 B. 5 C. 3或5 D. 3或6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】景观大道要进行绿化改造,已知购买A种树苗3棵,B种树苗4棵,需要370元;购买A种树苗5棵,B种树苗2棵,需要430元
(1)求购买A,B两种树苗每棵各需多少元?
(2)现需购买这两种树苗共100棵,要求购买这两种树苗的资金不超过5860元,求最多能购买多少棵A种树苗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).
(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;
(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;
(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:
①的值为 ;
②∠AMB的度数为 .
(2)类比探究
如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠ACB=90°,tanB=,AB=5,点O为边AB上一动点,以O为圆心,OB为半径的圆交射线BC于点E,以A为圆心,OB为半径的圆交射线AC于点G.
(1)如图1,当点E、G分别在边BC、AC上,且CE=CG时,请判断圆A与圆O的位置关系,并证明你的结论;
(2)当圆O与圆A存在公共弦MN时(如图2),设OB=x,MN=y,求y关于x的函数解析式,并写出定义域;
(3)设圆A与边AB的交点为F,联结OE、EF,当△OEF为以OE为腰的等腰三角形时,求圆O的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若cos∠BAD=,BE=12,求OE的长;
(3)求证:BC2=2CDOE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com