分析 由已知条件得到AE:AB=2:5,根据DE∥BC,得到△ADE∽△ABC,根据相似三角形的性质得到$\frac{{S}_{△ADE}}{{S}_{△ABC}}$=($\frac{AE}{AB}$)2=$\frac{4}{25}$,即可得到结论.
解答 解:∵AE:EB=2:3,
∴AE:AB=2:5,
∵DE∥BC,
∴△ADE∽△ABC,
∴$\frac{{S}_{△ADE}}{{S}_{△ABC}}$=($\frac{AE}{AB}$)2=$\frac{4}{25}$,
∴△AED的面积与四边形DEBC的面积之比=4:21,
故答案为:4:21.
点评 本题考查了相似三角形的判定及性质,比例的基本性质的运用,相似三角形的面积与相似比的关系,熟练掌握相似三角形的判定定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com