【题目】如图,△ABC、△DCE、△FEG是三个全等的等腰三角形,底边BC、CE、EG在同一直线上,且AB= ,BC=1,连结BF,分别交AC、DC、DE于点P、Q、R.
(1)求证:△BFG∽△FEG
(2)求sin∠FBG的值.
【答案】(1)证明见解析;(2).
【解析】
(1)已知三个全等的等腰三角形,以及边长,所以可求得各线段的长,即可求得线段的比值,由公共角即可证得△BFG∽△FEG;
(2)过F作FH⊥BG于H,则∠FHG=90°,由等腰三角形的性质得出,由勾股定理得:,由相似三角形的性质得出∠BFG=∠FEG=∠G,得出BF=BG=3BC=3,再由三角函数定义即可得出结果.
解:(1)依题可得:
BC=CE=EG=1,FG=AB=,
∴BG=3,
在△BFG和△FEG中,
∵,∠G=∠G,
∴△BFG∽△FEG.
(2)过点F作FH⊥BG于点H,如图,
,
则∠FHG=90°,
∵△FEG是等腰三角形,EG=1,
∴,
∴FH= ,
∵△BFG∽△FEG,
∴∠BFG=∠FEG=∠G,
∴BF=BG=3BC=3,
在Rt△FBH中,
∴sin∠FBG=.
科目:初中数学 来源: 题型:
【题目】如图1,点A在x轴上,OA=4,将OA绕点O逆时针旋转120°至OB的位置.
(1)求经过A、O、B三点的抛物线的函数解析式;
(2)在此抛物线的对称轴上是否存在点P使得以P、O、B三点为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3 )如图2,OC=4,⊙A的半径为2,点M是⊙A上的一个动点,求MC+OM的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在⊙O上.
(1)求证:AE=AB.
(2)填空:
①当∠CAB=90°,cos∠ADB=,BE=2时,边BC的长为 .
②当∠BAE= 时,四边形AOED是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的菱形ABCD中,∠A=60°,点M、N是边AB、BC上的动点,若△DMN为等边三角形,点M、N不与点A、B、C重合,则△BMN面积的最大值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是( )
A. 4B. 2 C. 4 D. 不确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.
(1)分别求出一次函数与反比例函数的表达式;
(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动:同时点Q沿边AB,BC从点A开始向点C以acm/s的速度移动,当点P移动到点A时,P,Q同时停止移动.设点P出发x秒时,△PAQ的面积为ycm2,y与x的函数图象如图②,线段EF所在的直线对应的函数关系式为y=﹣4x+21,则a的值为( )
A. 1.5B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O, BC是⊙O 的直径,点A是⊙O上的定点,AD平分∠BAC交⊙O于点D,DG∥BC,交AC延长线于点G.
(1)求证:DG与⊙O相切;
(2)作BE⊥AD于点E,CF⊥AD于点F,试判断线段BE,CF、EF三者之间的数量关系,并证明你的结论(不用尺规作图的方法补全图形).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.
校本课程 | 频数 | 频率 |
A | 36 | 0.45 |
B |
| 0.25 |
C | 16 | b |
D | 8 |
|
合计 | a | 1 |
请您根据图表中提供的信息回答下列问题:
(1)统计表中的a= ,b= ;
(2)“D”对应扇形的圆心角为 度;
(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;
(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com