精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙A经过点E、B、C、O,且C(0,8),E(﹣6,0),O(0,0),则cos∠OBC的值为(
A.
B.
C.
D.

【答案】A
【解析】解:连接EC,∵∠COE=90°, ∴EC是⊙A的直径,
∵C(0,8),E(﹣6,0),O(0,0),
∴OC=8,OE=6,
由勾股定理得:EC=10,
∵∠OBC=∠OEC,
∴cos∠OBC=cos∠OEC= =
故选A.
连接EC,由∠COE=90°,根据圆周角定理可得:EC是⊙A的直径,由C(0,8),E(﹣6,0),O(0,0),可得OC=8,OE=6,根据勾股定理可求EC=10,然后由圆周角定理可得∠OBC=∠OEC,然后求出cos∠OEC的值,即可得cos∠OBC的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系中,抛物线 交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.

(1)求抛物线的解析式及顶点D的坐标.
(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:
(1)求本次测试共调查了多少名学生?
(2)求本次测试结果为B等级的学生数,并补全条形统计图;
(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且a<b.连结OA,并以点A为旋转中心把OA逆时针转90°后得线段BA.若点A、B恰好都在同一反比例函数的图象上,则 的值等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题:
(1) +( 1﹣2cos60°;
(2)(2x﹣y)2﹣(x+y)(x﹣y).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,直线l与x轴、y轴分别交于点B(4,0)、C(0,3),点A为x轴负半轴上一点,AM⊥BC于点M交y轴于点N,满足4CN=5ON.已知抛物线y=ax2+bx+c经过点A、B、C.

(1)求抛物线的函数关系式;
(2)连接AC,点D在线段BC上方的抛物线上,连接DC、DB,若△BCD和△ABC面积满足SBCD= SABC , 求点D的坐标;
(3)如图2,E为OB中点,设F为线段BC上一点(不含端点),连接EF.一动点P从E出发,沿线段EF以每秒1个单位的速度运动到F,再沿着线段FC以每秒 个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请直接写出最少时间和此时点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是( )
A.当a=1时,函数图象过点(﹣1,1)
B.当a=﹣2时,函数图象与x轴没有交点
C.若a>0,则当x≥1时,y随x的增大而减小
D.若a<0,则当x≤1时,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB在数轴上分别表示实数abAB两点之间的距离表示为AB=|ab|,回答下列问题:

(1)数轴上表示1和﹣3的两点之间的距离是   

(2)数轴上表示x和﹣1的两点分别是点AB,如果AB=2,那么x   

(3)互不相等的有理数abc在数轴上的对应点分别为ABC,如果|ca|+|bc|=|ab|,那么,在点ABC中居中的点是   

(4)当|x+2|+|x﹣1|取最小值时,相应的x的取值范围是   

若|xa|+|xb|的最小值为4,若a=3,则b的值为   

式子|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣617|的最小值是   

查看答案和解析>>

同步练习册答案