精英家教网 > 初中数学 > 题目详情
8.如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠CEF的度数是70°.

分析 先根据平行线的性质得∠ABC=∠C=35°,再根据角平分线定义得∠ABF=2∠ABC=70°,然后根据两直线平行,同位角相等可得∠CEF=∠ABF=70°.

解答 解:∵AB∥CD,
∴∠ABC=∠C=35°,
∵BC平分∠ABE,
∴∠ABF=2∠ABC=70°,
∵AB∥CD,
∴∠CEF=∠ABF=70°.
故答案为70°.

点评 本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.如图,AC,BD相交于点O,∠A=36°,∠B=45°,∠C=48°,则∠D的度数为33°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,△ABC是⊙O的内接等边三角形,⊙O的半径0D、OE分别交BC、CA于点F、G,∠DOE=120°.探索四边形0FCG的面积(图中阴影部分)与△ABC面积之间的数量关系,并说明理由(提示:连接0B、OC)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.市政府为了改善城市交通环境,在如图所示的池塘B、C两点之间修建起一条公路桥(如图),经测量原路中的AB=6km,∠ABC=45°,∠ACB=30°,若一辆汽车的耗油量为0.2升/km,那么现在一辆汽车每通过一次新桥(BC)可以比走原路(BAC)节省多少升油?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列调查中,最适合采用抽样调查的是(  )
A.对旅客上飞机前的安检B.了解全班同学每周体育锻炼的时间
C.企业招聘,对应聘人员的面试D.了解某批次灯泡的使用寿命情况

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.补全解答过程:
已知:如图,直线AB、CD相交于点O,OA平分∠EOC,若∠EOC:∠EOD=2:3,求∠BOD的度数.
解:由题意∠EOC:∠EOD=2:3,
设∠EOC=2x°,则∠EOD=3x°.
∵∠EOC+∠EOD=180°(平角的定义),
∴2x+3x=180.
x=36.
∴∠EOC=72°.
∵OA平分∠EOC(已知),
∴∠AOC=$\frac{1}{2}$∠EOC=36°.
∵∠BOD=∠AOC(对顶角相等),
∴∠BOD=36°(等量代换)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为多少厘米?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.由$({\sqrt{2}+1})({\sqrt{2}-1})=1$,得$\frac{1}{{\sqrt{2}-1}}=\sqrt{2}+1$;
由$({\sqrt{3}+\sqrt{2}})({\sqrt{3}-\sqrt{2}})=1$,得$\frac{1}{{\sqrt{3}-\sqrt{2}}}=\sqrt{3}+\sqrt{2}$;

观察上面的规律,写出你的发现$\frac{1}{\sqrt{n+1}-\sqrt{n}}$=$\sqrt{n+1}$+$\sqrt{n}$(n≥1).(用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:
(1)3+(-1)+(-3)+1+(-4)
(2)(-9)+4+(-5)+8
(3)(-36.35)+(-7.25)+26.35+(+7$\frac{1}{4}$)  
(4)$\frac{5}{9}$+1$\frac{5}{6}$+$\frac{4}{9}$+(-2)
(5)(-$\frac{3}{2}$)+(-$\frac{15}{12}$)+$\frac{5}{2}$+(-$\frac{7}{12}$)  
(6)(-$\frac{1}{3}$)+(+$\frac{2}{5}$)+(+$\frac{3}{5}$)+(-1$\frac{2}{3}$)

查看答案和解析>>

同步练习册答案