【题目】如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1) 求P点坐标及a的值;
(2)如图(1),
抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3) 如图(2),
点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
【答案】(1)顶点P的为(-2,-5),a=
(2)抛物线C3的表达式为 y=- (x-4)2+5
(3)当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点
的三角形是直角三角形.
【解析】
(1)把B(1,0)代入y=a(x+2)2-5,即可解得a值;
(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G,根据P、M关于点B成中心对称,证明△PBH≌△MBG,即可求出MG=PH=5,BG=BH=3,得到顶点M的坐标,再根据抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到,即可写出抛物线C3的表达式
(3)根据抛物线C4由C1绕点x轴上的点Q旋转180°得到,点N的纵坐标为5,设点N的坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PK⊥NG于K,可求出EF=AB=2BH=6,FG=3,点F坐标为(m+3,0),H坐标为(2,0),K坐标为(m,-5),
根据勾股定理得PN2=NK2+PK2=m2+4m+104,PF2=PH2+HF2=m2+10m+50,NF2=52+32=34,再分三种情况讨论即可.
(1)由抛物线C1:y=a(x+2)2-5,得
顶点P的为(-2,-5)
∵点B(1,0)在抛物线C1上
∴0= a(1+2)2-5
解得,a=
(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G
∵点P、M关于点B成中心对称
∴PM过点B,且PB=MB
∴△PBH≌△MBG
∴MG=PH=5,BG=BH=3
∴顶点M的坐标为(4,5)
∵抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到
∴抛物线C3的表达式为 y=- (x-4)2+5
(3)∵抛物线C4由C1绕点x轴上的点Q旋转180°得到
∴顶点N、P关于点Q成中心对称
由(2)得点N的纵坐标为5
设点N坐标为(m,5)
作PH⊥x轴于H,作NG⊥x轴于G,作PK⊥NG于K
∵旋转中心Q在x轴上
∴EF=AB=2BH=6
∴FG=3,点F坐标为(m+3,0),H坐标为(2,0),K坐标为(m,-5),
PN2=NK2+PK2=m2+4m+104
PF2=PH2+HF2=m2+10m+50
NF2=52+32=34
①当∠PNF=90时,PN2+ NF2=PF2,解得m=,
∴Q点坐标为(,0)
②当∠PFN=90时,PF2+ NF2=PN2,解得m=,∴Q点坐标为(,0)
③∵PN>NK=10>NF,∴∠NPF≠90
综上所得,当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点
的三角形是直角三角形.
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,与轴交于点,点为线段的中点,的平分线与轴相较于点,、两点关于轴对称.
(1)一动点从点出发,沿适当的路径运动到直线上的点,再沿适当的路径运动到点处.当的运动路径最短时,求此时点的坐标及点所走最短路径的长.
(2)点沿直线水平向右运动得点,平面内是否存在点使得以、、、为顶点的四边形为菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB为直径,作OD⊥AB交AC于点D,延长BC,OD交于点F,过点C作⊙O的切线CE,交OF于点E.
(1)求证:EC=ED;
(2)如果OA=4,EF=3,求弦AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为( )
A. (,) B. (,) C. (,) D. (,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是( )
A. y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,函数()的图象经过边长为2的正方形OABC的顶点B,如图,直线与()的图象交于点D(点D在直线BC的上方),与x轴交于点E .
(1)求k的值;
(2)横、纵坐标都是整数的点叫做整点.记()的图象在点B,D之间的部分与线段AB,AE,DE围成的区域(不含边界)为W.
①当时,直接写出区域W内的整点个数;
②若区域W内恰有3个整点,结合函数图象,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:
(甲)作AB的中垂线,交BC于P点,则P即为所求;
(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求.
对于两人的作法,下列判断何者正确?( )
A. 两人皆正确B. 两人皆错误C. 甲正确,乙错误D. 甲错误,乙正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q分别从BC两点同时出发,其中点P沿BC向终点C运动.速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).
(1)求x为何值时,PQ⊥AC;
(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;
(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于点D和E,作直线DE交AB于点F,交AC于点G,连接CF,以点C为圆心,以CF的长为半径画弧,交AC于点H.若∠A=30°,BC=2,则AH的长是( )
A. B. 2C. +1D. 2﹣2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com