精英家教网 > 初中数学 > 题目详情

【题目】如图,一位篮球运动员跳起投篮,球沿抛物线y=x2+3.5运行,然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米.

(1)球在空中运行的最大高度为多少米?

(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?

【答案】(1) 3.5米;(2) 4

【解析】

(1)最大高度应是抛物线顶点的纵坐标的值;

(2)根据所建坐标系,水平距离是蓝框中心到Y轴的距离+球出手点到y轴的距离,即两点横坐标的绝对值的和.

解:(1)因为抛物线y=x2+3.5的顶点坐标为(03.5

所以球在空中运行的最大高度为3.5米;

(2)y=3.05时,3.05=x2+3.5

解得:x=±1.5

又因为x0

所以x=1.5

y=2.25时,

x=±2.5

又因为x0

所以x=2.5

|1.5|+|2.5|=1.5+2.5=4米,

故运动员距离篮框中心水平距离为4米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.

1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.

2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)以下列正方形网络的交点为顶点,分别画出两个相似比不为1的相似三角形,使它们:①都是直角三角形;②都是锐角三角形;③都是钝角三角形.

(2)如图,已知O是坐标原点,BC两点的坐标分别为(3,﹣1)(21)

①以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;

②分别写出BC两点的对应点B′C′的坐标;

③如果△OBC内部一点M的坐标为(xy),写出M的对应点M′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yx 2mx(m为常数),当-1≤x≤2时,函数y的最小值为-2,则m的值是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰直角三角形ABC,∠ACB=90°D是斜边AB的中点,且AC=BC=16分米,以点B为圆心,BD为半径画弧,交BC于点F,以点C为圆心,CD为半径画弧,分别交ABBC于点EG.求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,MAD=45°,MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形OABC的一边OAx轴上,将菱形OABC绕原点O顺时针旋转75°至OA’B’C’的位置.若OB=,∠C=120°,则点B’的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】善于归纳和总结的小明发现,数形结合是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形性质描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB⊥弦CD于点E,设AE=xBE=y,用含xy的式子表示图中的弦CD的长度),通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数xy的不等式,你也能发现这个不等式吗?写出你发现的不等式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=﹣x2+bx+cc0)的图象与x轴交于AB两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M

1)求二次函数的解析式;

2)点P为线段BM上的一个动点,过点Px轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;

3)探索:线段BM上是否存在点N,使NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案