【题目】如图,一架云梯AB的长25 m,斜靠在一面墙上,梯子靠墙的一端A距地面距离AC为24 m.
(1)这个梯子底端B离墙的距离BC有多少米?
(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也滑动了4 m吗?为什么?
科目:初中数学 来源: 题型:
【题目】如图所示,∠AOB=41°,点P为∠AOB内的一点,分别作出P点关于OA,OB的对称点,,连接交OA于M,交OB于N,,则△PMN的周长为_________,∠MPN________°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数的图象经过点P(2,﹣3).
(1)求该函数的解析式;
(2)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点P′,使点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)问t满足什么条件时,△BCP为直角三角形?
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:
①∠APB=120°;②AF+BE=AB.
那么,当AM∥BN时:
(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;
(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32 ,求AQ的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=,D是AB边上的一点,过D作DE⊥AB交AC于点E,BC=BD,连结CD交BE于点F.
(1)求证:CE=DE;
(2)若点D为AB的中点,求∠AED的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣2x+4与坐标轴分别交于C、B两点,过点C作CD⊥x轴,点P是x轴下方直线CD上的一点,且△OCP与△OBC相似,求过点P的双曲线解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下列数组作为三角形的三条边长,其中能构成直角三角形的是( )
A. 1, ,3 B. , ,5 C. 1.5,2,2.5 D. , ,
【答案】C
【解析】A、12+()2≠32,不能构成直角三角形,故选项错误;
B、(2+()2≠52,不能构成直角三角形,故选项错误;
C、1.52+22=2.52,能构成直角三角形,故选项正确;
D、())2+()2≠()2,不能构成直角三角形,故选项错误.
故选:C.
【题型】单选题
【结束】
3
【题目】在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到斜边AB的距离是( )
(A) (B) (C)9 (D)6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解下列方程:
(1)=3.
(2)(y+2)2=(3y﹣1)2.
(3)(x﹣2)(x+5)=8.
(4)(2x+1)2=﹣6x﹣3.
(5)2x2﹣3x﹣2=0.
(6)4x2﹣12x﹣1=0(配方法).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com