精英家教网 > 初中数学 > 题目详情

【题目】定义:

我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的相似对角线

理解:

1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC相似对角线的四边形(保留画图痕迹,找出3个即可);

2)如图2,在四边形ABCD中,∠ABC=80°∠ADC=140°,对角线BD平分∠ABC

求证:BD是四边形ABCD相似对角线

3)如图3,已知FH是四边形EFCH相似对角线∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.

【答案】1)见解析;(2)证明见解析;(3FH=2

【解析】

1)先求出ABBCAC,再分情况求出CDAD,即可画出图形;

2)先判断出∠A+∠ADB=140°=∠ADC,即可得出结论;

3)先判断出△FEH∽△FHG,得出FH2=FEFG,再判断出EQ=FE,继而求出FGFE=8,即可得出结论.

1)由图1知,AB=BC=2∠ABC=90°AC=5

四边形ABCD是以AC相似对角线的四边形,

∠ACD=90°时,△ACD∽△ABC△ACD∽△CBA

∴CD=10CD=2.5

同理:当∠CAD=90°时,AD=2.5AD=10

2∵∠ABC=80°BD平分∠ABC

∴∠ABD=∠DBC=40°

∴∠A+∠ADB=140°

∵∠ADC=140°

∴∠BDC+∠ADB=140°

∴∠A=∠BDC

∴△ABD∽△BDC

∴BD是四边形ABCD相似对角线

3)如图3

∵FH是四边形EFGH相似对角线

∴△EFH△HFG相似,

∵∠EFH=∠HFG

∴△FEH∽△FHG

∴FH2=FEFG

过点EEQ⊥FGQ

∴EQ=FEsin60°=FE

FG×EQ=2

FG×FE=2

∴FGFE=8

∴FH2=FEFG=8

∴FH=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程有实数根.

(1)m的值;

(2)先作的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;

(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本价为20/千克,经市场调查,每天销售量y(千克)与销售单价x(元千克)之间的关系如图所示,规定每千克售价不能低于30元,且不高于80元.

(1)直接写出yx之间的函数关系式;

(2)如果该超市销售这种商品每天获得3900元的利润,那么该商品的销售单价为多少元?

(3)设每天的总利润为w元,当销售单价定为多少元时,该超市每天的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有长为 24m 的篱笆,现一面利用墙(墙的最大可用长度 a 10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽 AB xm,面积为 Sm2

1 S x 的函数关系式及 x 值的取值范围;

2 要围成面积为 45m2 的花圃,AB 的长是多少米?

3 AB 的长是多少米时,围成的花圃的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识

的普及情况,随机调查了部分学生,调查结果分为非常了解”“了解”“了解较少”“不了解四类,

并将检查结果绘制成下面两个统计图.

(1)本次调查的学生共有__________人,估计该校1200 名学生中不了解的人数是__________人.

(2)非常了解的4 人有两名男生, 两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程m2x2+(2m﹣1)x+1=0有两个不相等的根a,b,

(1)求实数m的取值范围;

(2)是否存在实数m,使方程的两个实数根互为相反数?如果存在求出m的值,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,二次函数y=ax2+bx+c的图象与x轴交于AB两点,其中A点坐标为(﹣10),点C05),另抛物线经过点(18),M为它的顶点.

1)求抛物线的解析式;

2)求△MCB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴正半轴交于点A30).以OA为边在轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF,则= ,点E的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘渔船位于码头M的南偏东45°方向,距离码头120海里的B处,渔船从B处沿正北方向航行一段距离后,到达位于码头北偏东60°方向的A处.

1)求渔船从BA的航行过程中与码头M之间的最小距离.

2)若渔船以20海里/小时的速度从A沿AM方向行驶,求渔船从A到达码头M的航行时间.

查看答案和解析>>

同步练习册答案